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Abstract 
The problem of fixing errors in programs has at-
tracted substantial interest over the years. The 
key challenge for building an effective code fix-
ing tool is to capture a wide range of errors and 
meanwhile maintain high accuracy. In this pa-
per, we address this challenge and present a new 
learning-based system, called TFix. TFix works 
directly on program text and phrases the prob-
lem of code fixing as a text-to-text task. In turn, 
this enables it to leverage a powerful Transformer 
based model pre-trained on natural language and 
fine-tuned to generate code fixes (via a large, high-
quality dataset obtained from GitHub commits). 
TFix is not specific to a particular programming 
language or class of defects and, in fact, improved 
its precision by simultaneously fine-tuning on 52 
different error types reported by a popular static 
analyzer. Our evaluation on a massive dataset of 
JavaScript programs shows that TFix is practically 
effective: it is able to synthesize code that fixes 
the error in ∼67 percent of cases and significantly 
outperforms existing learning-based approaches. 

1. Introduction 
The high complexity and large size of modern code reposi-
tories have led to a substantial amount of coding errors, a 
serious obstacle to programmer productivity. While pow-
erful static analysis tools can detect errors, a significant 
amount of manual effort is still exerted on examining the 
reports and trying to fix these errors correctly. This situ-
ation indicates that a tool capable of automatically fixing 
real-world coding errors would be highly desirable. 

An ideal tool should cover a wide range of errors to benefit 
most developers and come with high fix accuracy. However, 
this is difficult to achieve as different types of coding errors, 
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such as variable misuses (Allamanis et al., 2018) and integer 
type errors (Coker & Hafiz, 2013), have varying root causes. 
To correctly fix these, it is necessary that the tool is able 
to capture a range of different program behaviors. Indeed, 
existing learning-based models either only fix specific kinds 
of errors (Vasic et al., 2019; Hellendoorn et al., 2020; Pradel 
& Sen, 2018; Cornu et al., 2015) or become very inaccurate 
(e.g., 25% accuracy) when extended to handling a more 
diverse, but still limited, set of errors (Dinella et al., 2020; 
Chen et al., 2019; Lutellier et al., 2020). 

This work: TFix To address this challenge, we present 
a new learning-based tool, called TFix1, that can accu-
rately synthesize fixes to a wide range of errors covered 
by ESLint (esl, 2021), the most popular static analyzer for 
JavaScript. TFix formulates the problem of fixing coding 
errors as a text-to-text prediction task. That is, given a cod-
ing error as text, TFix predicts a new text representing the 
code that fixes the error. Such a formulation benefits TFix 
in three ways: (a) it allows TFix to capture various error 
types in the same text format, (b) frees TFix from the bur-
den of creating a complicated code representation such as 
graphs (Allamanis et al., 2018; Dinella et al., 2020), and 
most importantly, (c) enables TFix to utilize a powerful 
model called Text-to-Text Transfer Transformer (T5) (Raf-
fel et al., 2020). T5 has been demonstrated to generalize 
across various natural language problems in the text-to-text 
format and is thus well-suited for our task. 

Leveraging new types of knowledge transfer TFix exploits 
two kinds of knowledge transfer that are not commonly 
adopted. First, our T5 model is pre-trained on natural lan-
guage and then fine-tuned on the programming task of code 
fixing. This enables knowledge transfer between natural 
and programming languages (Feng et al., 2020). Further, 
unlike prior works that train models for each individual 
error type (Pradel & Sen, 2018; Bader et al., 2019), we 
fine-tune various error types together (Dinella et al., 2020; 
Tarlow et al., 2020; Yasunaga & Liang, 2020), which en-
ables knowledge transfer between error types and can be 
seen as a form of multi-task learning (fixing each error type 
is an individual task). These two features are key factors for 

1The code, trained model, and dataset can be found at 
https://github.com/eth-sri/TFix. 
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TFix to learn a deep understanding of program semantics 
and thus achieve high accuracy for fixing coding errors. 

Fine-tuning with a large high-quality dataset To fine-tune 
T5, a large model with millions of parameters, we extract a 
large-scale dataset of ∼100k aligned pairs of coding errors 
and fixes from 5.5 million GitHub commits. The extrac-
tion process invokes the static analyzer and goes through a 
combination of greedy bipartite matching and Myers diff 
algorithm (Myers, 1986), resulting in a dataset of signifi-
cantly higher-quality than existing datasets created by in-
jecting artificial bugs (Vasic et al., 2019; Hellendoorn et al., 
2020; Pradel & Sen, 2018) or applying tree transformation 
rules (Bader et al., 2019; Dinella et al., 2020). 

Evaluation of TFix TFix’s design is not specific to a par-
ticular programming language or error type as it represents 
code as pure text. We conduct an extensive evaluation of 
TFix on a massive dataset of JavaScript programs to fix 52 
error types detected by ESLint. The results demonstrate 
that TFix is practically effective: it generates code that fixes 
the error in 67% of cases. Moreover, we compare TFix to 
SequenceR (Chen et al., 2019), CoCoNuT (Lutellier et al., 
2020), and Hoppity (Dinella et al., 2020), state-of-the-art 
machine learning tools for code error fixing. TFix signifi-
cantly outperforms these tools. Our case studies show that 
TFix can generate correct fixes for complex coding errors. 

2. Overview of TFix 
In this section, we provide an overview of TFix on a moti-
vating example. Figure 1 shows a JavaScript code snippet 
that copies properties from one object to another. Besides 
the desired properties, the code incorrectly copies the prop-
erties that belong to the prototype chain (pro, 2020). One 
way to avoid copying the undesired properties is to call the 
function hasOwnProperty, which ensures that the copied 
properties are directly in the object instance and are not 
inherited from the prototype chain. 

The defect in Figure 1 can be found by existing error detec-
tors such as ESLint. However, ESLint cannot automatically 
fix the defect and leaves the task to the developer. Our pro-
posed tool, TFix, can synthesize the snippet in Figure 2 used 
to replace the corresponding code in the input program to 
correctly fixes the error. This is achieved by learning from 
fixes made by human developers in open-source projects. 
Next, we show step-by-step how TFix fixes this error. 

The pipeline of TFix is shown in Figure 3. TFix first sends 
the input program to ESLint, which identifies a set of errors 
in the program. For the example in Figure 1, ESLint detects 
the defect and yields the following information: 

line 670 error: guard-for-in . error message: the body of 
a for-in should be wrapped in an if statement to filter 

if (value != null && fieldData.type != null) { 
var type = null; 
for (var typeEntry in types) { 

var typeNames = types[typeEntry]; 
if (typeNames.indexOf(fieldData.type) >= 0) { 

type = typeEntry; 

Figure 1. An example code snippet with an error 

var type = null; 
for(var typeEntry in types) { 

if(!types.hasOwnProperty(typeEntry)) continue; 
var typeNames = types[typeEnrty]; 

Figure 2. The output of TFix which fixes the error 

Input code Error detector: TFix code fix: Error-free code 
ESLint T5 model 

Figure 3. TFix’s pipeline for fixing code errors. 

unwanted properties from prototype . 

ESLint locates the error line (highlighted in blue in Figure 1) 
and outputs the error type and the error message . 

The way TFix proposes the correct fix is by first extracting 
the error context consisting of the error line and the two 
neighboring lines. Next, TFix represents all information 
about the error as a single piece of text: 

fix error type error message error line : error context 

Then TFix uses this text to query a machine learning model 
called Text-to-Text Transfer Transformer (T5) (Raffel et al., 
2020) which generates new text representing the code that 
fixes the error, as shown in Figure 2. The output text is the 
same as the error context, except for the inserted if-statement 
calling hasOwnProperty, shown in green . Indeed, the 
error is fixed after the error context in the original program 
is replaced by the generated code. 

Insights of TFix To generate this non-trivial code, our 
T5 model has to understand the semantics of the erroneous 
code and correctly apply hasOwnProperty, considering 
JavaScript syntax and context information such as local vari-
ables. Towards that, we leverage a T5 model pre-trained on 
a large corpus of NLP tasks and then fine-tune it for the spe-
cific task of fixing coding errors. This stimulates knowledge 
transfer between natural language and code: the pre-training 
drives the model to comprehend natural language fragments 
in code such as identifier names and then the fine-tuning 
quickly adapts the model to code fixing. 

To enable fine-tuning, we construct a new high-quality 
dataset consisting of aligned pairs of errors and fixes from 
5.5 million GitHub commits (discussed in Section 3.3) – 
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the largest dataset that captures fixes of coding errors we 
are aware of. Importantly, fine-tuning is done jointly on 
all 52 error types in the dataset, producing a single model. 
We experimentally show that this single model outperforms 
52 individual models trained for each error type. Indeed, 
knowledge transfer between error types is a key factor for 
TFix’ ability to generate correct fixes. 

Effectiveness of TFix We note that although, in hindsight, 
the design of TFix may seem simple, it was clearly not the 
obvious choice. Many recent works apply neural models 
of code for various tasks (Brody et al., 2020; Allamanis 
et al., 2020; Wei et al., 2020; Alon et al., 2020) but the 
practice of leveraging valuable knowledge from a model 
pre-trained with natural language is not yet common (Feng 
et al., 2020). Further, most models for code fixing only 
deal with one specific error and do not benefit from the 
knowledge transfer between error types (Hellendoorn et al., 
2020; Allamanis et al., 2018; Vasic et al., 2019; Pradel & 
Sen, 2018). Some works (Dinella et al., 2020; Tarlow et al., 
2020; Yasunaga & Liang, 2020) implicitly learn a single 
model for multiple types of errors but do not investigate the 
effectiveness of this design choice. 

We ran SequenceR (Chen et al., 2019), CoCoNuT (Lutel-
lier et al., 2020), and Hoppity (Dinella et al., 2020), three 
state-of-the-art learning-based tools for code fixing, on the 
example in Figure 1. None could learn the non-trivial behav-
ior of inserting a new statement and thus failed to generate 
a correct fix. We also evaluated TFix against the three tools 
and show that TFix’s accuracy is significantly better. Fi-
nally, the techniques of TFix are not specific to a particular 
language or error type and hence open up the possibility of 
future work for other languages and types of errors. 

3. The TFix Approach 
In this section, we describe the approach behind TFix, and 
how it is used to generate code fixes. 

3.1. Applying an External Error Detector 

The input to TFix is a set of coding errors found by a 
code analysis tool which we call detector. In our case, 
detector parses the input program into an abstract syntax 
tree (AST), then performs program analysis techniques to 
detect and report coding errors. Detecting different errors 
requires various program analyses. As a simple example, 
finding unused variables requires computing scopes of vari-
ables in an AST. TFix is modular as it does not depend 
on the complex inner logic of detector and can directly 
benefit from advances in bug finding. The inputs to TFix are 
the error reports made by detector. Each report consists 
of an error type, an error message, and one location. 

More formally, given a program p with N lines [li]Ni=1, 
detector identifies a list of M errors E = [ei]

M in pi=1 
(if any). The code analyzer detector usually supports 
multiple error types denoted by the set T . Each error e is a 
tuple (lk, L, t, m) where lk is the k-th line in the program 
p reported by detector for introducing the error, L = 
[lk−w, ..., lk−1, lk, lk+1, ..., lk+w] is the error context, i.e., 
lk and the lines surrounding lk with a window size of w, 
t ∈ T is the error type, and m is an error message. We set 
w = 1 in our evaluation. The input to TFix is the set of 
errors E . TFix processes each error in E individually. 

Instantiation with ESLint In our work, we instantiate 
detector with ESLint – a static analyzer for JavaScript 
covering a wide range of errors (esl, 2021). We focused 
on ESLint due to its popularity: it is adopted by major 
companies (com, 2021) and has 16 million weekly down-
loads (dow, 2021). ESLint allows configuring the set T 
of returned error types. We used its default configuration, 
which reports coding errors and best practices, but no format-
ting issues. ESLint internally includes a manually crafted 
capability to fix a limited set of stylistic issues concerning 
whitespaces in code. These whitespace formatting issues 
are disabled in the default ESLint configuration and were 
not included in TFix. There exist tools like ESLint for other 
languages, such as Pylint for Python (pyl, 2021), which can 
be used when extending TFix to other languages. 

3.2. Generating Code Fixes with T5 

The goal of TFix is to synthesize a fix for a detected error. 
We formulate this task as a text-to-text prediction, i.e., given 
a code error as text, TFix generates text representing new 
code that has the specific error fixed. Formally, given an 
error e = (lk, L, t, m), TFix represents it as a single piece 
of text by filling the following template: 

text(e) = “fix” t m “:” Llk 

where “fix” and “:” are raw strings, and is a space. Then, 
TFix queries a text-to-text encoder-decoder model which 
outputs L0 as text. L0 is used to replace the lines L in the 
code to fix the error e (assuming the fix of e lies in L). Note 
that TFix can be further improved by sampling from the 
model multiple times until a fix passes detector’s check. 
We leave that as future work. 

We leverage the Text-to-Text Transfer Transformer 
(T5) (Raffel et al., 2020) as our text-to-text model because 
our formulation is in line with its design. T5 is a generic 
model that unifies different tasks into the text-to-text format 
and is pre-trained on NLP tasks. We discuss how to fine-
tune T5 for the programming task of generating fixes for 
code errors in Section 3.3. 

To deal with large vocabulary size and out-of-vocabulary 
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(OOV) tokens, our work represents the input and output 
code text with Byte Pair Encoding (BPE) (Sennrich et al., 
2016), as with (Karampatsis et al., 2020) and the T5 model. 
Initialized with single characters, the BPE algorithm builds 
a vocabulary of sub-word tokens by iteratively merging the 
most frequently co-occurring sub-words. BPE is well-suited 
for text-to-text tasks and can generalize better to new words 
unseen at training time than copy mechanism (Chen et al., 
2019; Gu et al., 2016) and names splitting based on common 
naming styles (Lutellier et al., 2020; Allamanis et al., 2018; 
Alon et al., 2020). 

We note that our formulation allows TFix to capture more 
errors than existing works. Generating an l0 to replace lk,k 
as done in (Lutellier et al., 2020; Chen et al., 2019), is not 
enough for fixing many errors. This is because a correct fix 
usually involves modifying other lines in the context of lk. 
Hoppity (Dinella et al., 2020) suffers from the classic issue 
of limited vocabulary (Karampatsis et al., 2020). When the 
desired node value does not exist in the vocabulary, Hoppity 
can neither express nor generate the desired fix. 

3.3. Fine-tuning T5 for Synthesizing Code Fixes 

We now discuss our techniques for fine-tuning the pre-
trained T5 model for the task of generating code fixes. 

Fine-tuning objectives We assume a fine-tuning dataset 
D = {(e, L0)} consisting of d pairs of error e = 
{lk, L, t, m} and its corresponding fix L0 proposed by hu-
man developers. The fine-tuning objective is to minimize 
the cross-entropy loss:X X 

L(D) = log p(L0 | text(e)) (1) 
t0∈T (e,L0)∈D 

0t=t 

The teacher forcing algorithm (Williams & Zipser, 1989) is 
used during fine-tuning. 

Fine-tuning all error types together Note that our loss 
function in Equation (1) sums over all error types in T , 
i.e., we fine-tune all error types together, which can also be 
viewed as a form of multi-task learning that significantly 
enlarges the dataset and exploits the knowledge transfer be-
tween error types. We show in Section 4 that this technique 
significantly increases TFix’s accuracy. A future work item 
is to fine-tune multiple languages together to obtain a multi-
lingual code fixing model and benefit from the knowledge 
transfer between languages (Zügner et al., 2021). 

3.4. Obtaining a Fine-tuning Dataset 

To obtain the dataset D, we analyze a large volume of com-
mits C = {(p, p0)} from GitHub where p and p0 are the two 
versions of the program before and after the commit, respec-
tively. A challenge in obtaining a high-quality dataset is to 

Algorithm 1 Procedure for extracting a fine-tuning dataset. 

Input : C = {(p, p0)}, a dataset of GitHub commits. 
Output : D = {(e, L0)}, a fine-tuning dataset. 

1: D = emptyset() 
2: for (p, p0) in C do 
3: E = detector(p) ; E 0 = detector(p0) 
4: if |E| > |E 0| then 
5: Efixed = findFixedErrors(E , E 0) 
6: for e in Efixed do 
7: L0 = computeFix(e, p, p0) 
8: D.add((e, L0)) 
9: return clean(D) 

separate error fix commits from the many non-relevant com-
mits that remove an error by completely deleting code or 
other means, and to extract the parts of code that correspond 
to errors and fixes in the error fix commits. 

We present the data extraction and cleaning procedure of 
TFix in Algorithm 1. The algorithm starts with an empty set 
D (Line 1), iterates over the input commits C (Line 2), and 
runs detector to obtain E and E 0 on the pair of files p and 
p0 in each commit. Then it checks if the number of errors 

0in E is larger than that in E 0 . If so, it is very likely that p 
fixes some errors in p. Therefore, the commit is considered 
to contain error fixes. We note that we found this criterion 
for determining an error fix commit to be significantly more 
accurate in practice than previous approaches based on key-
words in the commit message (Lutellier et al., 2020) or the 
number of tree edits (Dinella et al., 2020) as it leverages the 
error detector in the decision process. 

TFix then calls the findFixedErrors function to identify 
a set of fixed errors Efixed ⊆ E by comparing E and E 0 . To 
achieve this, we leverage a bipartite matching algorithm on 
the errors in the sets E and E 0 . For each fixed error e ∈ 
Efixed, TFix invokes the computeFix function to extract 
the target fix L0 in p0 and to obtain a sample (e, L0) to be 
added to the dataset D (Line 6 to 8). Finally, clean (Line 9) 
removes noisy samples that contain misaligned error fixes. 

In Appendix B, we include an illustrative example of run-
ning Algorithm 1. Next we discuss findFixedErrors, 
computeFix and clean in detail. 

Finding fixed errors with bipartite matching The 
findFixedErrors function first invokes a greedy bipartite 
matching procedure between E and E 0 to identify a set of 
errors Eunfixed ⊆ E that remain unfixed after the commit. 
To compute the bipartite matching, we iterate all pairs of 

0errors e = (lk, L, t, m) ∈ E and e = (lk0 , L0, t0,m0) ∈ E 0 , 
0and accept (e, e0) as a match if t = t , m = m0 and the nor-

malized Levenshtein edit distance between the lines of code 
at lk and lk0 is small (we used a threshold 0.3). Intuitively, 
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Table 1. The number of samples and the accuracy on exact match (TFix, T5-large-no-pre-train, and T5-large-per-type) for each error type. 

Error type #Samples TFix 
(T5-large) 

T5-large-no-
pre-train 

T5-large-per-
type Error type #Samples TFix 

(T5-large) 
T5-large-no-

pre-train 
T5-large-per-

type 

no-new-symbol 10 100.0 0.0 0.0 no-extra-bind 684 71.0 21.7 55.1 
no-compare-neg-zero 13 0.0 0.0 0.0 no-case-declarations 725 58.9 0.0 47.9 
no-ex-assign 40 25.0 0.0 0.0 no-fallthrough 743 76.0 4.0 62.7 
for-direction 50 40.0 0.0 40.0 no-inner-declarations 831 38.1 3.6 23.8 
no-unsafe-finally 63 42.9 0.0 28.6 no-array-constructor 980 86.7 10.2 56.1 
use-isnan 71 37.5 0.0 25.0 no-constant-condition 1284 51.2 12.4 36.4 
no-class-assign 111 41.7 0.0 25.0 generator-star-spacing 1396 67.9 23.6 61.4 
no-dupe-class-members 117 8.3 0.0 8.3 no-extra-boolean-cast 1458 54.1 2.7 46.6 
no-func-assign 147 46.7 0.0 40.0 no-cond-assign 1512 47.4 11.2 33.6 
no-empty-pattern 178 27.8 5.6 16.7 no-process-exit 1514 32.9 10.5 20.4 
no-unused-labels 187 52.6 5.3 15.8 no-empty 2063 27.1 6.3 15.5 
no-duplicate-case 195 65.0 5.0 55.0 no-dupe-keys 2181 53.4 1.8 48.4 
getter-return 203 52.4 33.3 47.6 prefer-spread 2496 46.0 12.8 34.4 
no-sparse-arrays 237 25.0 0.0 20.8 no-useless-escape 2923 35.2 0.0 11.9 
no-const-assign 277 35.7 3.6 17.9 no-console 3067 73.6 4.9 69.4 
no-global-assign 318 59.4 9.4 37.5 guard-for-in 3232 41.7 2.8 28.4 
no-new-wrappers 360 27.8 2.8 19.4 no-throw-literal 4075 72.1 11.5 68.9 
no-this-before-super 413 47.6 9.5 26.2 no-debugger 4164 94.5 15.1 89.4 
no-unsafe-negation 423 72.1 7.0 60.5 prefer-rest-params 4582 35.9 8.9 22.0 
require-yield 429 72.1 14.0 39.5 no-unreachable 4727 63.8 16.5 58.4 
no-extend-native 443 31.1 0.0 13.3 no-extra-semi 5973 82.6 23.6 76.1 
no-new-object 446 71.1 6.7 53.3 no-redeclare 6381 49.5 2.3 45.4 
no-caller 449 20.0 4.4 20.0 comma-style 6398 46.2 7.0 38.8 
constructor-super 464 59.6 10.6 63.8 no-unused-vars 7768 51.9 1.8 47.0 
valid-typeof 539 51.9 7.4 37.0 no-undef 10, 637 22.4 0.9 16.5 
no-self-assign 610 34.4 4.9 37.7 no-invalid-this 16, 217 37.7 5.2 25.2 

0this means e and e are very likely to be the same error, so 
e remains unfixed after the commit. After the iteration fin-
ishes, all matched errors in E form the set Eunfixed. It could 
happen rarely that an error is matched more than once, in 
which case we simply discarded the commit. At the end, the 
set of fixed errors can be obtained by Efixed = E − Eunfixed. 

Computing target fix To compute the target fix L0 with 
computeFix, we first leverage the Myers diff algorithm 
(Myers, 1986) to compute a series of edit operations, which 

0can be used to transform p into p . Each edit operation 
inserts or deletes a piece of text (up to one line) from the 
program. We apply the edit operations and meanwhile track 
how lk is shifted in the program. We locate lk0 at the final 
position of lk after all edit operations are performed. Finally, 
L0 is obtained by taking the context of lk0 . 

Note that Lk0 may contain a newly added line and become 
badly aligned with Lk due to the fixed window size. For 
these cases, we apply a heuristic line-based search in the 
surrounding of lk and lk 

0 . As a result, Lk and Lk0 can be 
extended by few lines. 

Cleaning the dataset To obtain a high-quality develop-
ment dataset for our T5 model, we perform a cleaning step 
that removes potential noisy samples from the dataset D. 
We keep only samples where less than six edit operations 
are needed to obtain p0 from p. Note that since each edit op-
eration can change an entire line, the samples in D can still 

Sum: 104, 804 Avg: 49.3 Avg: 6.7 Avg: 36.3 

be very complicated. The reasoning is that in the filtered 
samples, the errors are fixed by the commit, but the target fix 
cannot be confidently computed to obtain a clean training 
sample. It is intriguing to check if TFix can fix even these 
errors that have longer or unaligned fixes, so we used the 
unfiltered errors as an additional test set in our evaluation. 

4. Evaluation 
In this section, we present our extensive evaluation of TFix 
and show its effectiveness in fixing real-world errors. 

4.1. Experimental Setup 

We first present the details of our experimental setup. 

Dataset We ran Algorithm 1 on 5.5 million commits ob-
tained from the top 500k GitHub public repositories based 
on the number of stars and extracted a dataset of fixes for 52 
error types detected by ESLint. We found that there were 
too many samples for some error types, which would make 
our dataset heavily skewed. Therefore, we performed ran-
dom downsampling for those error types. Our final dataset 
consists of 104, 804 samples. Detailed statistics are shown 
in Table 1, and the description for each error type can be 
found in (esl, 2021). To a create train-test split, we randomly 
selected 10% of the samples for each error type as the test 
set (we call it clean test). The remaining was further split 
into 90% for fine-tuning and 10% for validation. 
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To measure the dataset quality, we manually inspected 
100 samples randomly drawn from the whole dataset and 
checked if they are indeed error fixes. We found that 96 of 
them are true error fixes and the true error-fix rates lie in the 
interval [90.1, 98.9] with a confidence level of 95%, mean-
ing that our data construction process yielded a high-quality 
dataset with a tiny amount of noise. 

Besides clean test, we test how TFix generalizes to errors 
where the original fix was complex or noisy and therefore 
dropped in our data collection procedure. To this end, we 
assembled another test set called random test consisting 
of all fixable errors in the GitHub commits except for the 
ones used for fine-tuning and validation. This is done by 
considering all the errors in D before Line 9 of Algorithm 1 
and excluding the ones used for fine-tuning and validation. 
random test consists of 243, 054 samples. 

We made great efforts to remove duplicates in our dataset. 
For the GitHub repositories, we removed duplicate files that 
parse to the same abstract syntax tree and further applied 
a deduplication process on the commit level: for each file, 
we detected and discarded the commits that exactly repeat 
the changes in other commits. For instance, if there are 
commits A, B and C, where C performs the changes of A 
and B together, we drop C even if it might contain changes 
in other files. We also ensured that there are no identical 
samples in the final dataset. 

Metrics We propose two metrics for measuring the ac-
curacy of TFix. Exact match considers a prediction to be 
correct if and only if the fix perfectly matches the human 
fix done in the commit. Note that this metric presents a 
lower bound on TFix’s precision as an error can be fixed in 
multiple ways, and TFix may propose a correct fix different 
from the human fix. Error removal counts a prediction as 
correct if the error is removed and no new error is introduced 
after the erroneous code is replaced by the prediction. The 
average accuracy is computed by averaging the accuracy per 
error type. Exact match is a more strict metric than error 
removal as it requires that not only the error is removed but 
also the fix is the same as the one in the real commit. 

We report exact match and error removal accuracy for clean 
test. For random test, we only report error removal, as we 
do not have aligned human fixes for the error inputs. 

Hyperparameters and fine-tuning details We chose T5-
large as our model for TFix and implemented it with the 
transformers library (Wolf et al., 2020). In total, the model 
has 770 million parameters. For details on the architec-
ture, please refer to (Raffel et al., 2020). We initialized 
the weights with the pre-trained model (t5l, 2021). For 
fine-tuning, we used Adam (Kingma & Ba, 2015) with the 
learning rate initialized to 10−4 . We set warm-up iterations 

Table 2. Accuracy of T5 variations on clean test and random test. 

clean test random test 
Model 

Exact Error Error 
match removal removal 

TFix (T5-large) 49.3 67.8 52.5 
T5-large-no-pre-train 6.7 48.1 27.4 
T5-large-per-type 36.3 52.0 34.2 
T5-base 48.5 68.6 52.5 
T5-small 39.2 67.7 54.2 

to 500 and applied linear learning rate scheduling. TFix was 
fine-tuned on 8 GPUs (GeForce RTX 2080 Ti) with a batch 
size of 32. The fine-tuning ran for 30 epochs, which took 
3-4 days, and applied validation after each epoch. We note 
that due to constraints on GPU resources, T5-large is the 
largest T5 model we could run. We leave it as future work 
item to run TFix with larger T5 models. During inference, 
we used beam search with a beam size of five. 

Model variants To investigate the effectiveness of our 
design choices, we investigate the following T5 baselines: 

T5-large-no-pre-train: we initialized a T5-large model 
with no natural language pre-training and trained it from 
scratch with our dataset. 

T5-large-per-type: we performed fine-tuning and testing 
separately for each error type. 

T5-base & T5-small: we fine-tuned two smaller T5 models. 
T5-base and T5-small have 220 million and 60 million 
parameters, respectively. 

Other important conditions (e.g., dataset, optimizer, etc.) 
were held the same for those models. 

4.2. Accuracy on Fixing Coding Errors 

We present the accuracy results in Table 2. For clean test, 
TFix achieves 49.3% accuracy on exact match (accuracy 
per error type is shown in Table 1) and 67.8% accuracy on 
error removal. For random test, TFix removes the error in 
52.5% of the cases. Next, we provide an ablation study of 
TFix with each model variant. 

Effect of pre-training with natural languages The ac-
curacy of the T5-large-no-pre-train model trails that of the 
pre-trained model. The interesting result for this experiment 
is the significantly worse result of 6.7% on exact match. 
This demonstrates that the natural language pre-training is 
the key for TFix to generate correct fixes, but also points 
to an insight that relying only on code commits may cause 
the model to learn how to remove errors in ways a human 
would not do it. Such problems are reported also in prior 
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systems (Bader et al., 2019) where the proposed fix is fre-
quently not accepted by a human. 

Effect of fine-tuning all error types together We com-
pare TFix and T5-large-per-type to quantify the effect of 
fine-tuning all error types together. From Table 2, we can 
see that TFix achieves a significantly (>13%) higher accu-
racy than T5-large-per-type on all metrics. Table 1 shows 
that TFix significantly improves upon T5-large-per-type for 
almost all error types. These results confirm the importance 
of fine-tuning all error types together and the existence of 
knowledge transfer between different types of errors. In-
tuitively, one instance of such knowledge transfer happens 
when different types of errors target similar program state-
ments. Fine-tuning all error types together increases the size 
of the samples containing the target statements, helps the 
model learn better the semantics of those statements, and 
thus results in higher accuracy. 

Effect of model size We compare TFix with T5-base and 
T5-small to investigate the effect of model size. For exact 
match on clean test, TFix achieves 0.8% higher accuracy 
than T5-base and 10.1% higher accuracy than T5-small. 
Therefore, model size is an important factor from T5-small 
to T5-base but becomes marginal from T5-base to T5-large. 
For the error removal metric, none of the three models is 
significantly better than the others. We pick T5-large as 
the model for TFix mainly because T5-large achieves the 
highest accuracy on exact match, meaning that it is the best 
at synthesizing human-like fixes. 

4.3. Comparison with State-of-the-art Approaches 

We compare TFix with three state-of-the-art approaches: Se-
quenceR (Chen et al., 2019) and CoCoNuT (Lutellier et al., 
2020) based on seq2seq learning, and Hoppity (Dinella et al., 
2020) based on graph neural networks. 

Comparing with SequenceR and CoCoNuT Se-
quenceR is based on an LSTM encoder-decoder with copy 
mechanism (Gu et al., 2016). CoCoNuT is based on a 
convolutional encoder-decoder with global attention2. 

In the original papers, SequenceR and CoCoNuT use more 
restricted datasets requiring that the error and the fix are 
at the same line. Therefore, we extracted 42, 394 samples 
satisfying this requirement from our dataset and split them 
in the same way as described in Section 4.1, resulting in a 
new test set called restricted test. We compare their exact 
match accuracy with TFix on both restricted test and clean 
test. For each comparison, all three models were trained 

2We implemented the architecture in OpenNMT (Klein et al., 
2017) as the authors confirmed that the released source code cur-
rently needs an update and fixing (coc, 2021). 

Table 3. Accuracy on exact match for three compared tools. 

Tool restricted test clean test 

SequenceR 23.6 17.9 

CoCoNuT 16.4 11.7 

TFix 46.3 49.3 

on the same dataset. We also gave the same information to 
all three models, i.e., the input and output to these models 
were all encoded in the way described in Section 3.2. To be 
fair and measure the real learnability of the models, we set 
a reasonable beam size of five to generate one fix per error 
and did not perform ensemble learning. 

The results are presented in Table 3 showing that TFix 
significantly outperforms both SequenceR and CoCoNuT. 
SequenceR performs much worse than TFix because the 
LSTM encoder-decoder model is small and could only cap-
ture the behaviors of a limited set of errors. CoCoNuT 
performs even worse than SequenceR. The original paper of 
CoCoNuT learned ensembles and used a beam size of 1k to 
generate 20k fixes per error. The error is considered fixed 
as long as any of the 20k fixes passes the error check. We 
believe such a large candidate set is more important than the 
learnability of the model to make CoCoNuT effective. 

Comparing with Hoppity Hoppity represents a buggy 
program as a graph and predicts graph edits with graph 
neural networks to fix the bugs. We compare TFix with 
Hoppity showing that TFix significantly outperforms Hop-
pity in dataset quality, expressivity, and accuracy. 

Dataset quality We first measured the noise level of Hop-
pity’s dataset in the same way as we did for our dataset at 
the start of Section 4.1. We manually inspected 100 sam-
ples randomly drawn from Hoppity’s OneDiff dataset. We 
chose the OneDiff dataset as it was the main dataset used 
in (Dinella et al., 2020). We found that 34 samples were 
non-bug changes, including version changes, name changes, 
string changes, etc. The true bug-fix rate of the OneDiff 
dataset lies in the interval [55.8, 75.2] with a confidence 
level of 95%, which is significantly lower than ours. 

We also checked if our dataset considers more complicated 
error fixes than Hoppity’s, i.e., if more graph edits are 
needed to represent the samples in our dataset. To achieve 
this, we converted our dataset to Hoppity’s format. During 
the conversion, we retained the relevant information in our 
original dataset: we kept the error localization by extracting 
the smallest AST subtree containing the error context and 
added the error type as the root of the extracted subtrees. 
We did not include the error messages because they are long 
string values not fit in Hoppity’s vocabulary (see the next 
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constructor(location, parameterNameAndValues) { constructor(location, parameterNameAndValues) { 

this.location = location; super(location); 

this.parameterNameAndValues = parameterNameAndValues; this.parameterNameAndValues = parameterNameAndValues; 

Figure 4. TFix fixes a no-this-before-super error by converting an assignment into a call to the parent constructor. 

break; break; 

case typeof type === ’array’ && typeof type[0] === ’object’: case Array.isArray(type) && typeof type[0] === ’object’: 

if (isMethod) { if (isMethod) { 

Figure 5. TFix fixes a valid-typeof error by calling isArray function from the Array prototype. 

scout.NumberField.parent.prototype._init.call(this, model); scout.NumberField.parent.prototype._init.call(this, model); 

if (!this.decimalFormat instanceof scout.DecimalFormat) { if (!(this.decimalFormat instanceof scout.DecimalFormat)) { 

this.decimalFormat = new scout.DecimalFormat(... this.decimalFormat = new scout.DecimalFormat(... 

Figure 6. TFix fixes a no-unsafe-negation error by adding parantheses to change the order of the operations. 

paragraph for more details). On average, >8 graph edits 
were needed to represent our error fixes, while Hoppity’s 
datasets only contain up to 3 edits. 

Given that our dataset contains significantly less noise and 
more complex error fixes than Hoppity’s, we used our 
dataset for quantitatively comparing the expressivity and 
accuracy of TFix and Hoppity. 

Expressivity For some graph edits, Hoppity predicts node 
values from a vocabulary consisting of values from other 
nodes and values frequently seen in training. Hoppity’s 
expressivity is limited when the desired value does not exist 
in the vocabulary, i.e., it can neither express nor predict the 
desired change (and eventually the desired fix), but puts 
a special UNK token. Out of the 36, 361 samples in the 
OneDiff test set, 20, 491 samples involved edits with UNKs. 
In fact, according to the repository (hop, 2020), Hoppity 
deemed a fix as correct when UNKs are predicted for out-of-
vocabulary values. Therefore, Hoppity actually considered 
an easier learning task than generating a complete fix. We 
followed this for Hoppity in our comparison, giving favor 
to Hoppity. On the contrary, TFix does not have such a 
limitation in vocabulary and can express any fix thanks to 
the Byte Pair Encoding. After converting our dataset to Hop-
pity’s format, 1, 300 of the 10, 504 test samples had edits 
with UNKs. TFix output correct fixes for 393 of them, while 
Hoppity output 61 correct fixes. We note that adapting BPE 
to Hoppity would require non-trivial changes of its learning 
framework, which we do not consider in our comparison. 

Accuracy We trained and tested Hoppity on our converted 
dataset (using the same split) with the hyperparameters pro-
vided in their paper and code. The exact match accuracy of 
Hoppity was only 7.9% (for generating non-complete fixes 
with UNKs), significantly lower than TFix (49.3% accuracy 
for predicting a complete fix). This is non-surprising be-
cause even for the much simpler OneDiff dataset, Hoppity 
only had 14.2% Top-1 accuracy. If we consider generat-
ing complete fixes for Hoppity, its accuracy would be even 

lower. Moreover, Hoppity’s accuracy drops significantly 
with an increasing number of required graph edits due to 
the larger search space for the correct edit sequence: for 
1 to 10 edits, its accuracy was 47.2%, 26.1%, 7.6%, 9.7%, 
15.6%, 4.8%, 10.6%, 0.7%, 1.4%, 0.3%. For >10 edits, its 
accuracy was 0%. TFix does not have such a limitation with 
a text-to-text format. 

4.4. Case Studies 

We present three case studies to show how TFix fixes 
coding errors. More cases can be found in Appendix 
A. The first case is shown in Figure 4. ESLint finds 
a no-this-before-super error in the code on the 
left-hand side because the programmer tried to access a 
location field of the child object without having initial-
ized its parent class. TFix generates a correct fix on the 
right, calling the constructor of the parent class where the 
location field is initialized with the location variable. 

The second case is shown in Figure 5 and is about an incor-
rect application of JavaScript’s typeof operator captured by 
the valid-typeof error type. The programmer intended 
to check if the variable type is an array via the typeof 
operator. However, for arrays, the typeof operator just 
returns ’object’, making the check inconclusive. TFix 
successfully synthesizes a fix that calls the correct function 
isArrary from the Array prototype to perform the check. 

We show the final case in Figure 6. It is about 
a very common bug related to operator precedence. 
With the if statement, the developer intended to 
check that this.decimalFormat is not an instance of 
scout.DecimalFormat. However, the negation is ac-
tually performed on this.decimalFormat instead of 
the result of the instanceof operation, resulting in a 
no-unsafe-negation error. As a result, the if condi-
tion is always false. TFix adds parentheses to ensure the 
operators are applied in the correct order. 

These case studies show that TFix can generate correct fixes 
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even in the presence of non-trivial JavaScript semantics 
(e.g., inheritance) and can produce complex changes such 
as converting an assignment to a function call. 

5. Related Work 
We now discuss works more closely related to ours. 

Automated program repair Automated program repair 
(APR) has been a classic research topic in software engineer-
ing (Gazzola et al., 2019; Monperrus, 2018). Traditional 
APR approaches require a specification of correctness, usu-
ally in the form of a test suite or logic assertions. Given a 
program violating the specification, APR approaches out-
put a program satisfying the specification. The output can 
be obtained by applying edit patterns on abstract syntax 
trees (Rolim et al., 2018; Hua et al., 2018) or solving sym-
bolic constraints (Mechtaev et al., 2016; Nguyen et al., 2013; 
Xuan et al., 2017). Our work is significantly different from 
this line of research. APR works typically suffer from over-
fitting issues (Ye et al., 2021) as the specification is spe-
cific to individual programs and is often incomplete (Qi 
et al., 2015; Smith et al., 2015). Learning-based APR tech-
niques (Long & Rinard, 2016) are often limited to small 
and manually curated datasets (Sobreira et al., 2018) and 
do not lead to significant improvements in fix rates. On the 
contrary, TFix can generalize across programs by learning 
from a large dataset. Moreover, APR approaches require a 
significant amount of effort on modeling program semantics 
while TFix simply represents code as text. 

A notable APR work with machine learning that was 
hyped as a useful internal tool at Facebook (get, 2018) is 
GetaFix (Bader et al., 2019). GetaFix is similar to TFix in 
the way it learns from commits removing static analyzer 
warnings. While neither the tool nor the training data of 
GetaFix are available, their training data is much smaller, 
no learning is done across bugs, and no natural language 
pre-training is taken. Based on the amount of training data 
and their low accuracy for relatively simple bugs, we believe 
that TFix is much more performant and useful in practice. 

Learning-based code error fixing Recent years wit-
nessed an increasing interest in applying learning-based 
methods for detecting and fixing bugs. Graph neural net-
works (Allamanis et al., 2018), LSTM (Vasic et al., 2019), 
and Transformer based models (Hellendoorn et al., 2020) 
have been used on the task of detecting and fixing VarMis-
use errors. DeepBugs detects three specific types of bugs 
for JavaScript by learning code embeddings and a binary 
classifier for each bug type (Pradel & Sen, 2018). Unfor-
tunately, they are fundamentally non-competitive to static 
analysis tools for bug detection in terms of both accuracy 
and popularity. The main reason is that their models are 

trained with artificially injected bugs that cannot capture 
real bug distribution. Hoppity (Dinella et al., 2020) learns 
graph changes to detect and fix bugs. We showed that TFix 
is superior to Hoppity in Section 4.3. 

Another line of research focuses on fixing compilation er-
rors for introductory programming assignments. Deep-
Fix (Gupta et al., 2017) and sk p (Pu et al., 2016) leverage a 
RNN model to translate programs with compilation errors to 
compiled ones. Reinforcement learning (Gupta et al., 2019) 
and dynamic program embeddings (Wang et al., 2018) are 
used to improve the fix rate. DrRepair (Yasunaga & Liang, 
2020) utilizes a graph neural network and a self-supervised 
learning paradigm. Instead of compilation errors, TFix fixes 
bugs coming from a static analyzer. It is an interesting fu-
ture research item to extend TFix to fix compilation errors 
where accurate error localization is often unavailable. 

Neural models of code Apart from the models for de-
tecting and fixing coding errors, neural models have been 
proposed for other tasks, such as code editing (Brody et al., 
2020; Yin et al., 2019), type inference (Allamanis et al., 
2020; Wei et al., 2020), and code completion (Alon et al., 
2020; Brockschmidt et al., 2019). Several works focus 
on learning general purpose code embeddings (Alon et al., 
2019; Sui et al., 2020; Wang & Su, 2020). All of these 
models require complicated code representations, e.g., pro-
gram trees or graphs, and none benefit from pre-training 
on natural language. Natural language fragments are used 
in (Kanade et al., 2020; Feng et al., 2020) to train general-
purpose code embeddings for code. The authors of (Zügner 
et al., 2021) learn a multilingual representation for code. 
One possible future research item is to find out how the 
above models of code can be used in code error fixing. 

6. Conclusion 
We presented a new learning-based system, called TFix, for 
automatically fixing coding errors. The key idea behind 
TFix is to formulate the problem of synthesizing fixes for 
code errors as a text-to-text prediction. This enables TFix to 
leverage T5, a Transformer model pre-trained on NLP tasks 
and to fine-tune it for the task of generating code fixes, on 
a high-quality dataset of errors and fixes that we extracted 
from millions of GitHub commits. The accuracy of our 
T5 model was boosted further by considering various error 
types together during the fine-tuning process. Our extensive 
evaluation shows that TFix is practically effective: among 
the fixes generated by TFix, about half perfectly match 
human fixes, and about two-thirds remove the original error. 

We believe our work is an important step in transfer learning 
for code. It opens up new directions, e.g., directly applying 
large pre-trained models from NLP to programming tasks. 
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A. More Case Studies
In this section, we present eight additional case studies of
TFix. TFix exactly matches the human fixes in the commits
in four cases, removes the coding errors but does not per-
fectly match human fixes in two cases, and fails to generate
a correct fix in the remaining two cases.

Exact matches The first case is shown in Figure 7, the
developer forgot to write the return keyword in a getter
function, causing a getter-return error in ESLint. As a
result, the function does not return anything even though it
can still run. TFix correctly inserts the missing return.

Figure 8 presents the second case. The developer declared
variable value to be a constant type with the const key-
word but then assigned a new value to it. This resulted
in a no-const-assign error reported by ESLint. TFix
changes const to let, successfully fixing the error. Note
that the fix line is different from the error line in this exam-
ple, showing the importance of the error context.

In Figure 9, the developer directly compared counter to
NaN, which is a wrong way of checking if a variable is a
valid value in JavaScript. The correct way is to use the
library function isNaN, as suggested by TFix.

In the fourth case, as shown in Figure 10, the developer
intended to check if this.debug is true but wrongly
wrote an assignment in the if condition, which is a
common programming mistake. Therefore, ESLint re-
ported a no-cond-assign error. TFix fixes it by using
this.debug solely as the condition.

The above four cases show that TFix is capable of generating
human-like fixes for a wide range of errors.

Error removals Now we discuss two cases where TFix
synthesizes fixes that correctly remove the errors but are
different from human fixes. The first case is shown in Fig-
ure 11 where the developer used the throw statement on a
string literal, causing a no-throw-literal error. Later,
the developer fixed the error by printing the error message to
the console. On the other hand, TFix proposes to construct
and throw an Error instance, which is also correct.

The second case is shown in Figure 12 and the code contains
a guard-for-in error for the same reason as discussed in
Section 2. While the developer fixed the error by converting
for-in to forEach, TFix proposes to add an if-check for
the property. Both fixes remove the error correctly.

The above two cases show that TFix can generate correct
fixes that are syntactically different from but functionally
the same as human fixes.

Failures Next, we describe two cases where TFix could
not generate a correct fix. In the first case, shown in Fig-
ure 13, the programmer assigned a value to itself, which
does not make sense from a programming perspective. ES-
Lint denotes such errors with no-self-assign. In the
commit, the variable was assigned to the correct variable,
namely modified . TFix failed to generate a correct fix
due to its fixed windows size, i.e., the variable modified
is not in the error context. Increasing the window size can
potentially resolve this failure.

The second case is shown in Figure 14. The erroneous code
contains an empty catch block, and the developer fixed
it by simply printing the caught error to console. Unfortu-
nately, TFix generates a fix identical to the incorrect code
and is unable to solve the problem. The reason might be that
similar samples do not often occur in our fine-tuning dataset.
Enlarging the fine-tuning dataset can help TFix handle more
errors.



get [Symbol.iterator]() {

this.__data__[Symbol.iterator]();

}

get [Symbol.iterator]() {

return this.__data__[Symbol.iterator]();

}

Figure 7. TFix fixes a getter-return error by inserting the missing return keyword.

const { value =’’ } = e.detail || {};

value = this.getValue(newValue);

this._trigger(’onChange’, { detail: {value } });

let { value =’’ } = e.detail || {};

value = this.getValue(newValue);

this._trigger(’onChange’, { detail: {value } });

Figure 8. TFix fixes a no-const-assign error by changing the variable’s declaration type.

var randomCounter = false;

if (counter == NaN) {

counter = Math.floor(Math.random * 10000);

var randomCounter = false;

if (isNaN(counter)) {

counter = Math.floor(Math.random * 10000);

Figure 9. TFix fixes a use-isnan error by using the correct function supported by JavaScript.

var signal = JSON.parse(message.content);

if(this.debug = true)

console.log(message);

var signal = JSON.parse(message.content)

if(this.debug)

console.log(message);

Figure 10. TFix fixes a no-cond-assign error by correcting the condition.

Coding error:

if (destination == null) {

throw "destination is invalid";

}

Human fix:
if (destination == null) {

console.log("destination is invalid");

}

Output of TFix:

if (destination == null) {

throw new Error("destination is invalid");

}

Figure 11. TFix correctly fixes a no-throw-literal error by
constructing an Error instance while the human developer prints
the error message to console.

Coding error:

applyCss(obj) {

for (var key in obj) {

this.element.style[key] = obj[key];

Human fix:
applyCss(obj) {

Object.keys(obj).forEach(key) => {

this.element.style[key] = obj[key];

Output of TFix:

applyCss(obj) {

for (var key in obj) {

if (!obj.elements.hasOwnProperty(key)) continue;

this.element.style[key] = obj[key];

Figure 12. TFix correctly fixes a guard-for-in error by adding
an if-check while the human developer uses forEach.

Coding error:

{

modified = modified;

}

Human fix:
{

modified = modified_;

}

Output of TFix:

{

this.modified = parseInt(false);

}

Figure 13. TFix generates irrelevant code as a fix.

Coding error:

} catch (e) {

}

Human fix:
} catch (e) {

log.warn(error);

}

Output of TFix:

} catch (e) {

}

Figure 14. TFix generates a fix identical to the erroneous code.



B. Running Data Extraction on an Example
In this section, we explain our data extraction pipeline in
Algorithm 1 in more detail by running it on a simple, synthe-
sized commit. The process is similar in principle but more
complicated in detail for real-world commits.

Example commit with error fixing Figure 15 shows our
example commit (p, p′). From p to p′, the commit removes
Line 6, adds Line 7, and adds a new return token at Line 9.
First, TFix runs detector to detect errors on p and p′ (Line
3 of Algorithm 1). For p, detector detects a set of three
errors E = {e1, e2, e3}:

e1: no-this-before-super at Line 3.

e2: getter-return at Line 9.

e3: no-throw-literal at Line 13.

e2 is fixed in the commit with the newly added return

token. Therefore, for p′, detector identifies two errors
E = {e′1, e′2}:

e′1: no-this-before-super at Line 3.

e′2: no-throw-literal at Line 13.

Since |E| > |E ′| (Line 4 of Algorithm 1), we proceed the
extraction procedure as the commit contains an error fix.

Finding fixed errors with bipartite matching Next
TFix calls the findFixedErrors function to identify the
set of errors Efixed ⊆ E fixed in the commit (Line 5 of
Algorithm 1). To achieve this, findFixedErrors first in-
vokes the greedy bipartite matching procedure between E
and E ′ to find the set of unfixed errors Eunfixed ⊆ E . We
iterate all pairs of errors in E and E ′ to see if they are the
same error. Clearly, e1 = e′1 and e3 = e′2. Therefore,
Eunfixed = {e1, e3} and Efixed = E − Eunfixed = {e2}.

Computing target fix Then we compute the fix for e2

with the computeFix function (Line 7 of Algorithm 1). We
first leverage the Myers diff algorithm to obtain a series of
three edit operations:

1. Delete a whole line (Line 6).

2. Insert a new line (Line 7).

3. Insert return at Line 9 after the second tab.

We perform the above edit operations starting from p and
track how the error line lk of e2 (Line 9) shifts with each
edit operation to obtain the target fix line lk′ . The deletion

1 class HumanPlayer extends Player {

2 constructor(name) {

3 this.name = name;

4 this.health = 100;

5 }

6 - set health (health) { this.health = health; }

7 + get health () { return this.health; }

8 get name() {

9 +return this.name;

10 }

11 damage(x) {

12 if (x < 0) {

13 throw "No negative damage";

14 }

15 this.health -= x;

16 }

17 }

Figure 15. An example commit fixing a getter-return error.

at Line 6 pulls lk up by one line while the insertion at Line 7
pushes it down again, so we compute that lk′ stays at Line 9.
In the end, we obtain the following error context Lk and fix
context Lk′ as a sample in our dataset:

get name() {

this.name;

}

get name() {

return this.name;

}


