
TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer

Berkay Berabi 1 2 Jingxuan He 1 Veselin Raychev 1 2 Martin Vechev 1

Abstract
The problem of fixing errors in programs has at-
tracted substantial interest over the years. The
key challenge for building an effective code fix-
ing tool is to capture a wide range of errors and
meanwhile maintain high accuracy. In this pa-
per, we address this challenge and present a new
learning-based system, called TFix. TFix works
directly on program text and phrases the prob-
lem of code fixing as a text-to-text task. In turn,
this enables it to leverage a powerful Transformer
based model pre-trained on natural language and
fine-tuned to generate code fixes (via a large, high-
quality dataset obtained from GitHub commits).
TFix is not specific to a particular programming
language or class of defects and, in fact, improved
its precision by simultaneously fine-tuning on 52
different error types reported by a popular static
analyzer. Our evaluation on a massive dataset of
JavaScript programs shows that TFix is practically
effective: it is able to synthesize code that fixes
the error in ∼67 percent of cases and significantly
outperforms existing learning-based approaches.

1. Introduction
The high complexity and large size of modern code reposi-
tories have led to a substantial amount of coding errors, a
serious obstacle to programmer productivity. While pow-
erful static analysis tools can detect errors, a significant
amount of manual effort is still exerted on examining the
reports and trying to fix these errors correctly. This situ-
ation indicates that a tool capable of automatically fixing
real-world coding errors would be highly desirable.

An ideal tool should cover a wide range of errors to benefit
most developers and come with high fix accuracy. However,
this is difficult to achieve as different types of coding errors,

1Department of Computer Science, ETH Zurich, Switzer-
land 2Snyk, Switzerland. Correspondence to: Berkay
Berabi <berkay.berabi@gmail.com>, Jingxuan He <jingx-
uan.he@inf.ethz.ch>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

such as variable misuses (Allamanis et al., 2018) and integer
type errors (Coker & Hafiz, 2013), have varying root causes.
To correctly fix these, it is necessary that the tool is able
to capture a range of different program behaviors. Indeed,
existing learning-based models either only fix specific kinds
of errors (Vasic et al., 2019; Hellendoorn et al., 2020; Pradel
& Sen, 2018; Cornu et al., 2015) or become very inaccurate
(e.g., 25% accuracy) when extended to handling a more
diverse, but still limited, set of errors (Dinella et al., 2020;
Chen et al., 2019; Lutellier et al., 2020).

This work: TFix To address this challenge, we present
a new learning-based tool, called TFix1, that can accu-
rately synthesize fixes to a wide range of errors covered
by ESLint (esl, 2021), the most popular static analyzer for
JavaScript. TFix formulates the problem of fixing coding
errors as a text-to-text prediction task. That is, given a cod-
ing error as text, TFix predicts a new text representing the
code that fixes the error. Such a formulation benefits TFix
in three ways: (a) it allows TFix to capture various error
types in the same text format, (b) frees TFix from the bur-
den of creating a complicated code representation such as
graphs (Allamanis et al., 2018; Dinella et al., 2020), and
most importantly, (c) enables TFix to utilize a powerful
model called Text-to-Text Transfer Transformer (T5) (Raf-
fel et al., 2020). T5 has been demonstrated to generalize
across various natural language problems in the text-to-text
format and is thus well-suited for our task.

Leveraging new types of knowledge transfer TFix exploits
two kinds of knowledge transfer that are not commonly
adopted. First, our T5 model is pre-trained on natural lan-
guage and then fine-tuned on the programming task of code
fixing. This enables knowledge transfer between natural
and programming languages (Feng et al., 2020). Further,
unlike prior works that train models for each individual
error type (Pradel & Sen, 2018; Bader et al., 2019), we
fine-tune various error types together (Dinella et al., 2020;
Tarlow et al., 2020; Yasunaga & Liang, 2020), which en-
ables knowledge transfer between error types and can be
seen as a form of multi-task learning (fixing each error type
is an individual task). These two features are key factors for

1The code, trained model, and dataset can be found at
https://github.com/eth-sri/TFix.

https://github.com/eth-sri/TFix
mailto:uan.he@inf.ethz.ch
mailto:berkay.berabi@gmail.com

TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer

TFix to learn a deep understanding of program semantics
and thus achieve high accuracy for fixing coding errors.

Fine-tuning with a large high-quality dataset To fine-tune
T5, a large model with millions of parameters, we extract a
large-scale dataset of ∼100k aligned pairs of coding errors
and fixes from 5.5 million GitHub commits. The extrac-
tion process invokes the static analyzer and goes through a
combination of greedy bipartite matching and Myers diff
algorithm (Myers, 1986), resulting in a dataset of signifi-
cantly higher-quality than existing datasets created by in-
jecting artificial bugs (Vasic et al., 2019; Hellendoorn et al.,
2020; Pradel & Sen, 2018) or applying tree transformation
rules (Bader et al., 2019; Dinella et al., 2020).

Evaluation of TFix TFix’s design is not specific to a par-
ticular programming language or error type as it represents
code as pure text. We conduct an extensive evaluation of
TFix on a massive dataset of JavaScript programs to fix 52
error types detected by ESLint. The results demonstrate
that TFix is practically effective: it generates code that fixes
the error in 67% of cases. Moreover, we compare TFix to
SequenceR (Chen et al., 2019), CoCoNuT (Lutellier et al.,
2020), and Hoppity (Dinella et al., 2020), state-of-the-art
machine learning tools for code error fixing. TFix signifi-
cantly outperforms these tools. Our case studies show that
TFix can generate correct fixes for complex coding errors.

2. Overview of TFix
In this section, we provide an overview of TFix on a moti-
vating example. Figure 1 shows a JavaScript code snippet
that copies properties from one object to another. Besides
the desired properties, the code incorrectly copies the prop-
erties that belong to the prototype chain (pro, 2020). One
way to avoid copying the undesired properties is to call the
function hasOwnProperty, which ensures that the copied
properties are directly in the object instance and are not
inherited from the prototype chain.

The defect in Figure 1 can be found by existing error detec-
tors such as ESLint. However, ESLint cannot automatically
fix the defect and leaves the task to the developer. Our pro-
posed tool, TFix, can synthesize the snippet in Figure 2 used
to replace the corresponding code in the input program to
correctly fixes the error. This is achieved by learning from
fixes made by human developers in open-source projects.
Next, we show step-by-step how TFix fixes this error.

The pipeline of TFix is shown in Figure 3. TFix first sends
the input program to ESLint, which identifies a set of errors
in the program. For the example in Figure 1, ESLint detects
the defect and yields the following information:

line 670 error: guard-for-in . error message: the body of
a for-in should be wrapped in an if statement to filter

if (value != null && fieldData.type != null) {
var type = null;
for (var typeEntry in types) {

var typeNames = types[typeEntry];
if (typeNames.indexOf(fieldData.type) >= 0) {

type = typeEntry;

Figure 1. An example code snippet with an error

var type = null;
for(var typeEntry in types) {

if(!types.hasOwnProperty(typeEntry)) continue;
var typeNames = types[typeEnrty];

Figure 2. The output of TFix which fixes the error

Input code Error detector: TFix code fix: Error-free code
ESLint T5 model

Figure 3. TFix’s pipeline for fixing code errors.

unwanted properties from prototype .

ESLint locates the error line (highlighted in blue in Figure 1)
and outputs the error type and the error message .

The way TFix proposes the correct fix is by first extracting
the error context consisting of the error line and the two
neighboring lines. Next, TFix represents all information
about the error as a single piece of text:

fix error type error message error line : error context

Then TFix uses this text to query a machine learning model
called Text-to-Text Transfer Transformer (T5) (Raffel et al.,
2020) which generates new text representing the code that
fixes the error, as shown in Figure 2. The output text is the
same as the error context, except for the inserted if-statement
calling hasOwnProperty, shown in green . Indeed, the
error is fixed after the error context in the original program
is replaced by the generated code.

Insights of TFix To generate this non-trivial code, our
T5 model has to understand the semantics of the erroneous
code and correctly apply hasOwnProperty, considering
JavaScript syntax and context information such as local vari-
ables. Towards that, we leverage a T5 model pre-trained on
a large corpus of NLP tasks and then fine-tune it for the spe-
cific task of fixing coding errors. This stimulates knowledge
transfer between natural language and code: the pre-training
drives the model to comprehend natural language fragments
in code such as identifier names and then the fine-tuning
quickly adapts the model to code fixing.

To enable fine-tuning, we construct a new high-quality
dataset consisting of aligned pairs of errors and fixes from
5.5 million GitHub commits (discussed in Section 3.3) –

TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer

the largest dataset that captures fixes of coding errors we
are aware of. Importantly, fine-tuning is done jointly on
all 52 error types in the dataset, producing a single model.
We experimentally show that this single model outperforms
52 individual models trained for each error type. Indeed,
knowledge transfer between error types is a key factor for
TFix’ ability to generate correct fixes.

Effectiveness of TFix We note that although, in hindsight,
the design of TFix may seem simple, it was clearly not the
obvious choice. Many recent works apply neural models
of code for various tasks (Brody et al., 2020; Allamanis
et al., 2020; Wei et al., 2020; Alon et al., 2020) but the
practice of leveraging valuable knowledge from a model
pre-trained with natural language is not yet common (Feng
et al., 2020). Further, most models for code fixing only
deal with one specific error and do not benefit from the
knowledge transfer between error types (Hellendoorn et al.,
2020; Allamanis et al., 2018; Vasic et al., 2019; Pradel &
Sen, 2018). Some works (Dinella et al., 2020; Tarlow et al.,
2020; Yasunaga & Liang, 2020) implicitly learn a single
model for multiple types of errors but do not investigate the
effectiveness of this design choice.

We ran SequenceR (Chen et al., 2019), CoCoNuT (Lutel-
lier et al., 2020), and Hoppity (Dinella et al., 2020), three
state-of-the-art learning-based tools for code fixing, on the
example in Figure 1. None could learn the non-trivial behav-
ior of inserting a new statement and thus failed to generate
a correct fix. We also evaluated TFix against the three tools
and show that TFix’s accuracy is significantly better. Fi-
nally, the techniques of TFix are not specific to a particular
language or error type and hence open up the possibility of
future work for other languages and types of errors.

3. The TFix Approach
In this section, we describe the approach behind TFix, and
how it is used to generate code fixes.

3.1. Applying an External Error Detector

The input to TFix is a set of coding errors found by a
code analysis tool which we call detector. In our case,
detector parses the input program into an abstract syntax
tree (AST), then performs program analysis techniques to
detect and report coding errors. Detecting different errors
requires various program analyses. As a simple example,
finding unused variables requires computing scopes of vari-
ables in an AST. TFix is modular as it does not depend
on the complex inner logic of detector and can directly
benefit from advances in bug finding. The inputs to TFix are
the error reports made by detector. Each report consists
of an error type, an error message, and one location.

More formally, given a program p with N lines [li]Ni=1,
detector identifies a list of M errors E = [ei]

M in pi=1
(if any). The code analyzer detector usually supports
multiple error types denoted by the set T . Each error e is a
tuple (lk, L, t, m) where lk is the k-th line in the program
p reported by detector for introducing the error, L =
[lk−w, ..., lk−1, lk, lk+1, ..., lk+w] is the error context, i.e.,
lk and the lines surrounding lk with a window size of w,
t ∈ T is the error type, and m is an error message. We set
w = 1 in our evaluation. The input to TFix is the set of
errors E . TFix processes each error in E individually.

Instantiation with ESLint In our work, we instantiate
detector with ESLint – a static analyzer for JavaScript
covering a wide range of errors (esl, 2021). We focused
on ESLint due to its popularity: it is adopted by major
companies (com, 2021) and has 16 million weekly down-
loads (dow, 2021). ESLint allows configuring the set T
of returned error types. We used its default configuration,
which reports coding errors and best practices, but no format-
ting issues. ESLint internally includes a manually crafted
capability to fix a limited set of stylistic issues concerning
whitespaces in code. These whitespace formatting issues
are disabled in the default ESLint configuration and were
not included in TFix. There exist tools like ESLint for other
languages, such as Pylint for Python (pyl, 2021), which can
be used when extending TFix to other languages.

3.2. Generating Code Fixes with T5

The goal of TFix is to synthesize a fix for a detected error.
We formulate this task as a text-to-text prediction, i.e., given
a code error as text, TFix generates text representing new
code that has the specific error fixed. Formally, given an
error e = (lk, L, t, m), TFix represents it as a single piece
of text by filling the following template:

text(e) = “fix” t m “:” Llk

where “fix” and “:” are raw strings, and is a space. Then,
TFix queries a text-to-text encoder-decoder model which
outputs L0 as text. L0 is used to replace the lines L in the
code to fix the error e (assuming the fix of e lies in L). Note
that TFix can be further improved by sampling from the
model multiple times until a fix passes detector’s check.
We leave that as future work.

We leverage the Text-to-Text Transfer Transformer
(T5) (Raffel et al., 2020) as our text-to-text model because
our formulation is in line with its design. T5 is a generic
model that unifies different tasks into the text-to-text format
and is pre-trained on NLP tasks. We discuss how to fine-
tune T5 for the programming task of generating fixes for
code errors in Section 3.3.

To deal with large vocabulary size and out-of-vocabulary

TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer

(OOV) tokens, our work represents the input and output
code text with Byte Pair Encoding (BPE) (Sennrich et al.,
2016), as with (Karampatsis et al., 2020) and the T5 model.
Initialized with single characters, the BPE algorithm builds
a vocabulary of sub-word tokens by iteratively merging the
most frequently co-occurring sub-words. BPE is well-suited
for text-to-text tasks and can generalize better to new words
unseen at training time than copy mechanism (Chen et al.,
2019; Gu et al., 2016) and names splitting based on common
naming styles (Lutellier et al., 2020; Allamanis et al., 2018;
Alon et al., 2020).

We note that our formulation allows TFix to capture more
errors than existing works. Generating an l0 to replace lk,k
as done in (Lutellier et al., 2020; Chen et al., 2019), is not
enough for fixing many errors. This is because a correct fix
usually involves modifying other lines in the context of lk.
Hoppity (Dinella et al., 2020) suffers from the classic issue
of limited vocabulary (Karampatsis et al., 2020). When the
desired node value does not exist in the vocabulary, Hoppity
can neither express nor generate the desired fix.

3.3. Fine-tuning T5 for Synthesizing Code Fixes

We now discuss our techniques for fine-tuning the pre-
trained T5 model for the task of generating code fixes.

Fine-tuning objectives We assume a fine-tuning dataset
D = {(e, L0)} consisting of d pairs of error e =
{lk, L, t, m} and its corresponding fix L0 proposed by hu-
man developers. The fine-tuning objective is to minimize
the cross-entropy loss:X X

L(D) = log p(L0 | text(e)) (1)
t0∈T (e,L0)∈D

0t=t

The teacher forcing algorithm (Williams & Zipser, 1989) is
used during fine-tuning.

Fine-tuning all error types together Note that our loss
function in Equation (1) sums over all error types in T ,
i.e., we fine-tune all error types together, which can also be
viewed as a form of multi-task learning that significantly
enlarges the dataset and exploits the knowledge transfer be-
tween error types. We show in Section 4 that this technique
significantly increases TFix’s accuracy. A future work item
is to fine-tune multiple languages together to obtain a multi-
lingual code fixing model and benefit from the knowledge
transfer between languages (Zügner et al., 2021).

3.4. Obtaining a Fine-tuning Dataset

To obtain the dataset D, we analyze a large volume of com-
mits C = {(p, p0)} from GitHub where p and p0 are the two
versions of the program before and after the commit, respec-
tively. A challenge in obtaining a high-quality dataset is to

Algorithm 1 Procedure for extracting a fine-tuning dataset.

Input : C = {(p, p0)}, a dataset of GitHub commits.
Output : D = {(e, L0)}, a fine-tuning dataset.

1: D = emptyset()
2: for (p, p0) in C do
3: E = detector(p) ; E 0 = detector(p0)
4: if |E| > |E 0| then
5: Efixed = findFixedErrors(E , E 0)
6: for e in Efixed do
7: L0 = computeFix(e, p, p0)
8: D.add((e, L0))
9: return clean(D)

separate error fix commits from the many non-relevant com-
mits that remove an error by completely deleting code or
other means, and to extract the parts of code that correspond
to errors and fixes in the error fix commits.

We present the data extraction and cleaning procedure of
TFix in Algorithm 1. The algorithm starts with an empty set
D (Line 1), iterates over the input commits C (Line 2), and
runs detector to obtain E and E 0 on the pair of files p and
p0 in each commit. Then it checks if the number of errors

0in E is larger than that in E 0 . If so, it is very likely that p
fixes some errors in p. Therefore, the commit is considered
to contain error fixes. We note that we found this criterion
for determining an error fix commit to be significantly more
accurate in practice than previous approaches based on key-
words in the commit message (Lutellier et al., 2020) or the
number of tree edits (Dinella et al., 2020) as it leverages the
error detector in the decision process.

TFix then calls the findFixedErrors function to identify
a set of fixed errors Efixed ⊆ E by comparing E and E 0 . To
achieve this, we leverage a bipartite matching algorithm on
the errors in the sets E and E 0 . For each fixed error e ∈
Efixed, TFix invokes the computeFix function to extract
the target fix L0 in p0 and to obtain a sample (e, L0) to be
added to the dataset D (Line 6 to 8). Finally, clean (Line 9)
removes noisy samples that contain misaligned error fixes.

In Appendix B, we include an illustrative example of run-
ning Algorithm 1. Next we discuss findFixedErrors,
computeFix and clean in detail.

Finding fixed errors with bipartite matching The
findFixedErrors function first invokes a greedy bipartite
matching procedure between E and E 0 to identify a set of
errors Eunfixed ⊆ E that remain unfixed after the commit.
To compute the bipartite matching, we iterate all pairs of

0errors e = (lk, L, t, m) ∈ E and e = (lk0 , L0, t0,m0) ∈ E 0 ,
0and accept (e, e0) as a match if t = t , m = m0 and the nor-

malized Levenshtein edit distance between the lines of code
at lk and lk0 is small (we used a threshold 0.3). Intuitively,

TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer

Table 1. The number of samples and the accuracy on exact match (TFix, T5-large-no-pre-train, and T5-large-per-type) for each error type.

Error type #Samples TFix
(T5-large)

T5-large-no-
pre-train

T5-large-per-
type Error type #Samples TFix

(T5-large)
T5-large-no-

pre-train
T5-large-per-

type

no-new-symbol 10 100.0 0.0 0.0 no-extra-bind 684 71.0 21.7 55.1
no-compare-neg-zero 13 0.0 0.0 0.0 no-case-declarations 725 58.9 0.0 47.9
no-ex-assign 40 25.0 0.0 0.0 no-fallthrough 743 76.0 4.0 62.7
for-direction 50 40.0 0.0 40.0 no-inner-declarations 831 38.1 3.6 23.8
no-unsafe-finally 63 42.9 0.0 28.6 no-array-constructor 980 86.7 10.2 56.1
use-isnan 71 37.5 0.0 25.0 no-constant-condition 1284 51.2 12.4 36.4
no-class-assign 111 41.7 0.0 25.0 generator-star-spacing 1396 67.9 23.6 61.4
no-dupe-class-members 117 8.3 0.0 8.3 no-extra-boolean-cast 1458 54.1 2.7 46.6
no-func-assign 147 46.7 0.0 40.0 no-cond-assign 1512 47.4 11.2 33.6
no-empty-pattern 178 27.8 5.6 16.7 no-process-exit 1514 32.9 10.5 20.4
no-unused-labels 187 52.6 5.3 15.8 no-empty 2063 27.1 6.3 15.5
no-duplicate-case 195 65.0 5.0 55.0 no-dupe-keys 2181 53.4 1.8 48.4
getter-return 203 52.4 33.3 47.6 prefer-spread 2496 46.0 12.8 34.4
no-sparse-arrays 237 25.0 0.0 20.8 no-useless-escape 2923 35.2 0.0 11.9
no-const-assign 277 35.7 3.6 17.9 no-console 3067 73.6 4.9 69.4
no-global-assign 318 59.4 9.4 37.5 guard-for-in 3232 41.7 2.8 28.4
no-new-wrappers 360 27.8 2.8 19.4 no-throw-literal 4075 72.1 11.5 68.9
no-this-before-super 413 47.6 9.5 26.2 no-debugger 4164 94.5 15.1 89.4
no-unsafe-negation 423 72.1 7.0 60.5 prefer-rest-params 4582 35.9 8.9 22.0
require-yield 429 72.1 14.0 39.5 no-unreachable 4727 63.8 16.5 58.4
no-extend-native 443 31.1 0.0 13.3 no-extra-semi 5973 82.6 23.6 76.1
no-new-object 446 71.1 6.7 53.3 no-redeclare 6381 49.5 2.3 45.4
no-caller 449 20.0 4.4 20.0 comma-style 6398 46.2 7.0 38.8
constructor-super 464 59.6 10.6 63.8 no-unused-vars 7768 51.9 1.8 47.0
valid-typeof 539 51.9 7.4 37.0 no-undef 10, 637 22.4 0.9 16.5
no-self-assign 610 34.4 4.9 37.7 no-invalid-this 16, 217 37.7 5.2 25.2

0this means e and e are very likely to be the same error, so
e remains unfixed after the commit. After the iteration fin-
ishes, all matched errors in E form the set Eunfixed. It could
happen rarely that an error is matched more than once, in
which case we simply discarded the commit. At the end, the
set of fixed errors can be obtained by Efixed = E − Eunfixed.

Computing target fix To compute the target fix L0 with
computeFix, we first leverage the Myers diff algorithm
(Myers, 1986) to compute a series of edit operations, which

0can be used to transform p into p . Each edit operation
inserts or deletes a piece of text (up to one line) from the
program. We apply the edit operations and meanwhile track
how lk is shifted in the program. We locate lk0 at the final
position of lk after all edit operations are performed. Finally,
L0 is obtained by taking the context of lk0 .

Note that Lk0 may contain a newly added line and become
badly aligned with Lk due to the fixed window size. For
these cases, we apply a heuristic line-based search in the
surrounding of lk and lk

0 . As a result, Lk and Lk0 can be
extended by few lines.

Cleaning the dataset To obtain a high-quality develop-
ment dataset for our T5 model, we perform a cleaning step
that removes potential noisy samples from the dataset D.
We keep only samples where less than six edit operations
are needed to obtain p0 from p. Note that since each edit op-
eration can change an entire line, the samples in D can still

Sum: 104, 804 Avg: 49.3 Avg: 6.7 Avg: 36.3

be very complicated. The reasoning is that in the filtered
samples, the errors are fixed by the commit, but the target fix
cannot be confidently computed to obtain a clean training
sample. It is intriguing to check if TFix can fix even these
errors that have longer or unaligned fixes, so we used the
unfiltered errors as an additional test set in our evaluation.

4. Evaluation
In this section, we present our extensive evaluation of TFix
and show its effectiveness in fixing real-world errors.

4.1. Experimental Setup

We first present the details of our experimental setup.

Dataset We ran Algorithm 1 on 5.5 million commits ob-
tained from the top 500k GitHub public repositories based
on the number of stars and extracted a dataset of fixes for 52
error types detected by ESLint. We found that there were
too many samples for some error types, which would make
our dataset heavily skewed. Therefore, we performed ran-
dom downsampling for those error types. Our final dataset
consists of 104, 804 samples. Detailed statistics are shown
in Table 1, and the description for each error type can be
found in (esl, 2021). To a create train-test split, we randomly
selected 10% of the samples for each error type as the test
set (we call it clean test). The remaining was further split
into 90% for fine-tuning and 10% for validation.

TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer

To measure the dataset quality, we manually inspected
100 samples randomly drawn from the whole dataset and
checked if they are indeed error fixes. We found that 96 of
them are true error fixes and the true error-fix rates lie in the
interval [90.1, 98.9] with a confidence level of 95%, mean-
ing that our data construction process yielded a high-quality
dataset with a tiny amount of noise.

Besides clean test, we test how TFix generalizes to errors
where the original fix was complex or noisy and therefore
dropped in our data collection procedure. To this end, we
assembled another test set called random test consisting
of all fixable errors in the GitHub commits except for the
ones used for fine-tuning and validation. This is done by
considering all the errors in D before Line 9 of Algorithm 1
and excluding the ones used for fine-tuning and validation.
random test consists of 243, 054 samples.

We made great efforts to remove duplicates in our dataset.
For the GitHub repositories, we removed duplicate files that
parse to the same abstract syntax tree and further applied
a deduplication process on the commit level: for each file,
we detected and discarded the commits that exactly repeat
the changes in other commits. For instance, if there are
commits A, B and C, where C performs the changes of A
and B together, we drop C even if it might contain changes
in other files. We also ensured that there are no identical
samples in the final dataset.

Metrics We propose two metrics for measuring the ac-
curacy of TFix. Exact match considers a prediction to be
correct if and only if the fix perfectly matches the human
fix done in the commit. Note that this metric presents a
lower bound on TFix’s precision as an error can be fixed in
multiple ways, and TFix may propose a correct fix different
from the human fix. Error removal counts a prediction as
correct if the error is removed and no new error is introduced
after the erroneous code is replaced by the prediction. The
average accuracy is computed by averaging the accuracy per
error type. Exact match is a more strict metric than error
removal as it requires that not only the error is removed but
also the fix is the same as the one in the real commit.

We report exact match and error removal accuracy for clean
test. For random test, we only report error removal, as we
do not have aligned human fixes for the error inputs.

Hyperparameters and fine-tuning details We chose T5-
large as our model for TFix and implemented it with the
transformers library (Wolf et al., 2020). In total, the model
has 770 million parameters. For details on the architec-
ture, please refer to (Raffel et al., 2020). We initialized
the weights with the pre-trained model (t5l, 2021). For
fine-tuning, we used Adam (Kingma & Ba, 2015) with the
learning rate initialized to 10−4 . We set warm-up iterations

Table 2. Accuracy of T5 variations on clean test and random test.

clean test random test
Model

Exact Error Error
match removal removal

TFix (T5-large) 49.3 67.8 52.5
T5-large-no-pre-train 6.7 48.1 27.4
T5-large-per-type 36.3 52.0 34.2
T5-base 48.5 68.6 52.5
T5-small 39.2 67.7 54.2

to 500 and applied linear learning rate scheduling. TFix was
fine-tuned on 8 GPUs (GeForce RTX 2080 Ti) with a batch
size of 32. The fine-tuning ran for 30 epochs, which took
3-4 days, and applied validation after each epoch. We note
that due to constraints on GPU resources, T5-large is the
largest T5 model we could run. We leave it as future work
item to run TFix with larger T5 models. During inference,
we used beam search with a beam size of five.

Model variants To investigate the effectiveness of our
design choices, we investigate the following T5 baselines:

T5-large-no-pre-train: we initialized a T5-large model
with no natural language pre-training and trained it from
scratch with our dataset.

T5-large-per-type: we performed fine-tuning and testing
separately for each error type.

T5-base & T5-small: we fine-tuned two smaller T5 models.
T5-base and T5-small have 220 million and 60 million
parameters, respectively.

Other important conditions (e.g., dataset, optimizer, etc.)
were held the same for those models.

4.2. Accuracy on Fixing Coding Errors

We present the accuracy results in Table 2. For clean test,
TFix achieves 49.3% accuracy on exact match (accuracy
per error type is shown in Table 1) and 67.8% accuracy on
error removal. For random test, TFix removes the error in
52.5% of the cases. Next, we provide an ablation study of
TFix with each model variant.

Effect of pre-training with natural languages The ac-
curacy of the T5-large-no-pre-train model trails that of the
pre-trained model. The interesting result for this experiment
is the significantly worse result of 6.7% on exact match.
This demonstrates that the natural language pre-training is
the key for TFix to generate correct fixes, but also points
to an insight that relying only on code commits may cause
the model to learn how to remove errors in ways a human
would not do it. Such problems are reported also in prior

TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer

systems (Bader et al., 2019) where the proposed fix is fre-
quently not accepted by a human.

Effect of fine-tuning all error types together We com-
pare TFix and T5-large-per-type to quantify the effect of
fine-tuning all error types together. From Table 2, we can
see that TFix achieves a significantly (>13%) higher accu-
racy than T5-large-per-type on all metrics. Table 1 shows
that TFix significantly improves upon T5-large-per-type for
almost all error types. These results confirm the importance
of fine-tuning all error types together and the existence of
knowledge transfer between different types of errors. In-
tuitively, one instance of such knowledge transfer happens
when different types of errors target similar program state-
ments. Fine-tuning all error types together increases the size
of the samples containing the target statements, helps the
model learn better the semantics of those statements, and
thus results in higher accuracy.

Effect of model size We compare TFix with T5-base and
T5-small to investigate the effect of model size. For exact
match on clean test, TFix achieves 0.8% higher accuracy
than T5-base and 10.1% higher accuracy than T5-small.
Therefore, model size is an important factor from T5-small
to T5-base but becomes marginal from T5-base to T5-large.
For the error removal metric, none of the three models is
significantly better than the others. We pick T5-large as
the model for TFix mainly because T5-large achieves the
highest accuracy on exact match, meaning that it is the best
at synthesizing human-like fixes.

4.3. Comparison with State-of-the-art Approaches

We compare TFix with three state-of-the-art approaches: Se-
quenceR (Chen et al., 2019) and CoCoNuT (Lutellier et al.,
2020) based on seq2seq learning, and Hoppity (Dinella et al.,
2020) based on graph neural networks.

Comparing with SequenceR and CoCoNuT Se-
quenceR is based on an LSTM encoder-decoder with copy
mechanism (Gu et al., 2016). CoCoNuT is based on a
convolutional encoder-decoder with global attention2.

In the original papers, SequenceR and CoCoNuT use more
restricted datasets requiring that the error and the fix are
at the same line. Therefore, we extracted 42, 394 samples
satisfying this requirement from our dataset and split them
in the same way as described in Section 4.1, resulting in a
new test set called restricted test. We compare their exact
match accuracy with TFix on both restricted test and clean
test. For each comparison, all three models were trained

2We implemented the architecture in OpenNMT (Klein et al.,
2017) as the authors confirmed that the released source code cur-
rently needs an update and fixing (coc, 2021).

Table 3. Accuracy on exact match for three compared tools.

Tool restricted test clean test

SequenceR 23.6 17.9

CoCoNuT 16.4 11.7

TFix 46.3 49.3

on the same dataset. We also gave the same information to
all three models, i.e., the input and output to these models
were all encoded in the way described in Section 3.2. To be
fair and measure the real learnability of the models, we set
a reasonable beam size of five to generate one fix per error
and did not perform ensemble learning.

The results are presented in Table 3 showing that TFix
significantly outperforms both SequenceR and CoCoNuT.
SequenceR performs much worse than TFix because the
LSTM encoder-decoder model is small and could only cap-
ture the behaviors of a limited set of errors. CoCoNuT
performs even worse than SequenceR. The original paper of
CoCoNuT learned ensembles and used a beam size of 1k to
generate 20k fixes per error. The error is considered fixed
as long as any of the 20k fixes passes the error check. We
believe such a large candidate set is more important than the
learnability of the model to make CoCoNuT effective.

Comparing with Hoppity Hoppity represents a buggy
program as a graph and predicts graph edits with graph
neural networks to fix the bugs. We compare TFix with
Hoppity showing that TFix significantly outperforms Hop-
pity in dataset quality, expressivity, and accuracy.

Dataset quality We first measured the noise level of Hop-
pity’s dataset in the same way as we did for our dataset at
the start of Section 4.1. We manually inspected 100 sam-
ples randomly drawn from Hoppity’s OneDiff dataset. We
chose the OneDiff dataset as it was the main dataset used
in (Dinella et al., 2020). We found that 34 samples were
non-bug changes, including version changes, name changes,
string changes, etc. The true bug-fix rate of the OneDiff
dataset lies in the interval [55.8, 75.2] with a confidence
level of 95%, which is significantly lower than ours.

We also checked if our dataset considers more complicated
error fixes than Hoppity’s, i.e., if more graph edits are
needed to represent the samples in our dataset. To achieve
this, we converted our dataset to Hoppity’s format. During
the conversion, we retained the relevant information in our
original dataset: we kept the error localization by extracting
the smallest AST subtree containing the error context and
added the error type as the root of the extracted subtrees.
We did not include the error messages because they are long
string values not fit in Hoppity’s vocabulary (see the next

TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer

constructor(location, parameterNameAndValues) { constructor(location, parameterNameAndValues) {

this.location = location; super(location);

this.parameterNameAndValues = parameterNameAndValues; this.parameterNameAndValues = parameterNameAndValues;

Figure 4. TFix fixes a no-this-before-super error by converting an assignment into a call to the parent constructor.

break; break;

case typeof type === ’array’ && typeof type[0] === ’object’: case Array.isArray(type) && typeof type[0] === ’object’:

if (isMethod) { if (isMethod) {

Figure 5. TFix fixes a valid-typeof error by calling isArray function from the Array prototype.

scout.NumberField.parent.prototype._init.call(this, model); scout.NumberField.parent.prototype._init.call(this, model);

if (!this.decimalFormat instanceof scout.DecimalFormat) { if (!(this.decimalFormat instanceof scout.DecimalFormat)) {

this.decimalFormat = new scout.DecimalFormat(... this.decimalFormat = new scout.DecimalFormat(...

Figure 6. TFix fixes a no-unsafe-negation error by adding parantheses to change the order of the operations.

paragraph for more details). On average, >8 graph edits
were needed to represent our error fixes, while Hoppity’s
datasets only contain up to 3 edits.

Given that our dataset contains significantly less noise and
more complex error fixes than Hoppity’s, we used our
dataset for quantitatively comparing the expressivity and
accuracy of TFix and Hoppity.

Expressivity For some graph edits, Hoppity predicts node
values from a vocabulary consisting of values from other
nodes and values frequently seen in training. Hoppity’s
expressivity is limited when the desired value does not exist
in the vocabulary, i.e., it can neither express nor predict the
desired change (and eventually the desired fix), but puts
a special UNK token. Out of the 36, 361 samples in the
OneDiff test set, 20, 491 samples involved edits with UNKs.
In fact, according to the repository (hop, 2020), Hoppity
deemed a fix as correct when UNKs are predicted for out-of-
vocabulary values. Therefore, Hoppity actually considered
an easier learning task than generating a complete fix. We
followed this for Hoppity in our comparison, giving favor
to Hoppity. On the contrary, TFix does not have such a
limitation in vocabulary and can express any fix thanks to
the Byte Pair Encoding. After converting our dataset to Hop-
pity’s format, 1, 300 of the 10, 504 test samples had edits
with UNKs. TFix output correct fixes for 393 of them, while
Hoppity output 61 correct fixes. We note that adapting BPE
to Hoppity would require non-trivial changes of its learning
framework, which we do not consider in our comparison.

Accuracy We trained and tested Hoppity on our converted
dataset (using the same split) with the hyperparameters pro-
vided in their paper and code. The exact match accuracy of
Hoppity was only 7.9% (for generating non-complete fixes
with UNKs), significantly lower than TFix (49.3% accuracy
for predicting a complete fix). This is non-surprising be-
cause even for the much simpler OneDiff dataset, Hoppity
only had 14.2% Top-1 accuracy. If we consider generat-
ing complete fixes for Hoppity, its accuracy would be even

lower. Moreover, Hoppity’s accuracy drops significantly
with an increasing number of required graph edits due to
the larger search space for the correct edit sequence: for
1 to 10 edits, its accuracy was 47.2%, 26.1%, 7.6%, 9.7%,
15.6%, 4.8%, 10.6%, 0.7%, 1.4%, 0.3%. For >10 edits, its
accuracy was 0%. TFix does not have such a limitation with
a text-to-text format.

4.4. Case Studies

We present three case studies to show how TFix fixes
coding errors. More cases can be found in Appendix
A. The first case is shown in Figure 4. ESLint finds
a no-this-before-super error in the code on the
left-hand side because the programmer tried to access a
location field of the child object without having initial-
ized its parent class. TFix generates a correct fix on the
right, calling the constructor of the parent class where the
location field is initialized with the location variable.

The second case is shown in Figure 5 and is about an incor-
rect application of JavaScript’s typeof operator captured by
the valid-typeof error type. The programmer intended
to check if the variable type is an array via the typeof
operator. However, for arrays, the typeof operator just
returns ’object’, making the check inconclusive. TFix
successfully synthesizes a fix that calls the correct function
isArrary from the Array prototype to perform the check.

We show the final case in Figure 6. It is about
a very common bug related to operator precedence.
With the if statement, the developer intended to
check that this.decimalFormat is not an instance of
scout.DecimalFormat. However, the negation is ac-
tually performed on this.decimalFormat instead of
the result of the instanceof operation, resulting in a
no-unsafe-negation error. As a result, the if condi-
tion is always false. TFix adds parentheses to ensure the
operators are applied in the correct order.

These case studies show that TFix can generate correct fixes

TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer

even in the presence of non-trivial JavaScript semantics
(e.g., inheritance) and can produce complex changes such
as converting an assignment to a function call.

5. Related Work
We now discuss works more closely related to ours.

Automated program repair Automated program repair
(APR) has been a classic research topic in software engineer-
ing (Gazzola et al., 2019; Monperrus, 2018). Traditional
APR approaches require a specification of correctness, usu-
ally in the form of a test suite or logic assertions. Given a
program violating the specification, APR approaches out-
put a program satisfying the specification. The output can
be obtained by applying edit patterns on abstract syntax
trees (Rolim et al., 2018; Hua et al., 2018) or solving sym-
bolic constraints (Mechtaev et al., 2016; Nguyen et al., 2013;
Xuan et al., 2017). Our work is significantly different from
this line of research. APR works typically suffer from over-
fitting issues (Ye et al., 2021) as the specification is spe-
cific to individual programs and is often incomplete (Qi
et al., 2015; Smith et al., 2015). Learning-based APR tech-
niques (Long & Rinard, 2016) are often limited to small
and manually curated datasets (Sobreira et al., 2018) and
do not lead to significant improvements in fix rates. On the
contrary, TFix can generalize across programs by learning
from a large dataset. Moreover, APR approaches require a
significant amount of effort on modeling program semantics
while TFix simply represents code as text.

A notable APR work with machine learning that was
hyped as a useful internal tool at Facebook (get, 2018) is
GetaFix (Bader et al., 2019). GetaFix is similar to TFix in
the way it learns from commits removing static analyzer
warnings. While neither the tool nor the training data of
GetaFix are available, their training data is much smaller,
no learning is done across bugs, and no natural language
pre-training is taken. Based on the amount of training data
and their low accuracy for relatively simple bugs, we believe
that TFix is much more performant and useful in practice.

Learning-based code error fixing Recent years wit-
nessed an increasing interest in applying learning-based
methods for detecting and fixing bugs. Graph neural net-
works (Allamanis et al., 2018), LSTM (Vasic et al., 2019),
and Transformer based models (Hellendoorn et al., 2020)
have been used on the task of detecting and fixing VarMis-
use errors. DeepBugs detects three specific types of bugs
for JavaScript by learning code embeddings and a binary
classifier for each bug type (Pradel & Sen, 2018). Unfor-
tunately, they are fundamentally non-competitive to static
analysis tools for bug detection in terms of both accuracy
and popularity. The main reason is that their models are

trained with artificially injected bugs that cannot capture
real bug distribution. Hoppity (Dinella et al., 2020) learns
graph changes to detect and fix bugs. We showed that TFix
is superior to Hoppity in Section 4.3.

Another line of research focuses on fixing compilation er-
rors for introductory programming assignments. Deep-
Fix (Gupta et al., 2017) and sk p (Pu et al., 2016) leverage a
RNN model to translate programs with compilation errors to
compiled ones. Reinforcement learning (Gupta et al., 2019)
and dynamic program embeddings (Wang et al., 2018) are
used to improve the fix rate. DrRepair (Yasunaga & Liang,
2020) utilizes a graph neural network and a self-supervised
learning paradigm. Instead of compilation errors, TFix fixes
bugs coming from a static analyzer. It is an interesting fu-
ture research item to extend TFix to fix compilation errors
where accurate error localization is often unavailable.

Neural models of code Apart from the models for de-
tecting and fixing coding errors, neural models have been
proposed for other tasks, such as code editing (Brody et al.,
2020; Yin et al., 2019), type inference (Allamanis et al.,
2020; Wei et al., 2020), and code completion (Alon et al.,
2020; Brockschmidt et al., 2019). Several works focus
on learning general purpose code embeddings (Alon et al.,
2019; Sui et al., 2020; Wang & Su, 2020). All of these
models require complicated code representations, e.g., pro-
gram trees or graphs, and none benefit from pre-training
on natural language. Natural language fragments are used
in (Kanade et al., 2020; Feng et al., 2020) to train general-
purpose code embeddings for code. The authors of (Zügner
et al., 2021) learn a multilingual representation for code.
One possible future research item is to find out how the
above models of code can be used in code error fixing.

6. Conclusion
We presented a new learning-based system, called TFix, for
automatically fixing coding errors. The key idea behind
TFix is to formulate the problem of synthesizing fixes for
code errors as a text-to-text prediction. This enables TFix to
leverage T5, a Transformer model pre-trained on NLP tasks
and to fine-tune it for the task of generating code fixes, on
a high-quality dataset of errors and fixes that we extracted
from millions of GitHub commits. The accuracy of our
T5 model was boosted further by considering various error
types together during the fine-tuning process. Our extensive
evaluation shows that TFix is practically effective: among
the fixes generated by TFix, about half perfectly match
human fixes, and about two-thirds remove the original error.

We believe our work is an important step in transfer learning
for code. It opens up new directions, e.g., directly applying
large pre-trained models from NLP to programming tasks.

TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer

References
Getafix: How facebook tools learn to fix bugs automatically,

2018. URL https://engineering.fb.com/2
018/11/06/developer-tools/getafix-ho
w-facebook-tools-learn-to-fix-bugs-a
utomatically/.

Github – hoppity, 2020. URL https://github.com
/AI-nstein/hoppity.

Copying objects in javascript, 2020. URL https://www.
digitalocean.com/community/tutorials
/copying-objects-in-javascript/.

Github issues – coconut, 2021. URL https://github
.com/lin-tan/CoCoNut-Artifact/issues
/3.

Who’s using eslint?, 2021. URL https://eslint.o
rg/users.

eslint – npm, 2021. URL https://www.npmjs.com/
package/eslint.

List of rules supported by ESLint, 2021. URL https:
//eslint.org/docs/rules/.

Pylint – code analysis for python, 2021. URL https:
//www.pylint.org/.

T5-large pre-trained model, 2021. URL https://gith
ub.com/google-research/text-to-text-
transfer-transformer.

Allamanis, M., Brockschmidt, M., and Khademi, M. Learn-
ing to represent programs with graphs. In ICLR, 2018.
URL https://openreview.net/forum?id=
BJOFETxR-.

Allamanis, M., Barr, E. T., Ducousso, S., and Gao, Z. Typ-
ilus: neural type hints. In PLDI, 2020. URL https:
//doi.org/10.1145/3385412.3385997.

Alon, U., Zilberstein, M., Levy, O., and Yahav, E. code2vec:
learning distributed representations of code. Proc. ACM
Program. Lang., 3(POPL):40:1–40:29, 2019. URL ht
tps://doi.org/10.1145/3290353.

Alon, U., Sadaka, R., Levy, O., and Yahav, E. Structural
language models of code. In ICML, 2020. URL http:
//proceedings.mlr.press/v119/alon20a
.html.

Bader, J., Scott, A., Pradel, M., and Chandra, S. Getafix:
learning to fix bugs automatically. Proc. ACM Program.
Lang., 3(OOPSLA):159:1–159:27, 2019. URL https:
//doi.org/10.1145/3360585.

Brockschmidt, M., Allamanis, M., Gaunt, A. L., and Polo-
zov, O. Generative code modeling with graphs. In ICLR,
2019. URL https://openreview.net/for
um?id=Bke4KsA5FX.

Brody, S., Alon, U., and Yahav, E. A structural model for
contextual code changes. Proc. ACM Program. Lang., 4
(OOPSLA):215:1–215:28, 2020. URL https://doi.
org/10.1145/3428283.

Chen, Z., Kommrusch, S. J., Tufano, M., Pouchet, L.-
N., Poshyvanyk, D., and Monperrus, M. Sequencer:
Sequence-to-sequence learning for end-to-end program
repair. IEEE Transactions on Software Engineering,
2019.

Coker, Z. and Hafiz, M. Program transformations to fix C
integers. In ICSE, 2013. URL https://doi.org/
10.1109/ICSE.2013.6606625.

Cornu, B., Durieux, T., Seinturier, L., and Monperrus, M.
Npefix: Automatic runtime repair of null pointer ex-
ceptions in java. CoRR, abs/1512.07423, 2015. URL
http://arxiv.org/abs/1512.07423.

Dinella, E., Dai, H., Li, Z., Naik, M., Song, L., and Wang,
K. Hoppity: Learning graph transformations to detect
and fix bugs in programs. In ICLR, 2020. URL https:
//openreview.net/forum?id=SJeqs6EFvB.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., and Zhou, M.
Codebert: A pre-trained model for programming and
natural languages. In EMNLP Findings, 2020. URL
https://doi.org/10.18653/v1/2020.fin
dings-emnlp.139.

Gazzola, L., Micucci, D., and Mariani, L. Automatic soft-
ware repair: A survey. IEEE Trans. Software Eng., 45(1):
34–67, 2019. URL https://doi.org/10.1109/
TSE.2017.2755013.

Gu, J., Lu, Z., Li, H., and Li, V. O. K. Incorporating copying
mechanism in sequence-to-sequence learning. In ACL,
2016. URL https://doi.org/10.18653/v1/
p16-1154.

Gupta, R., Pal, S., Kanade, A., and Shevade, S. K. Deepfix:
Fixing common C language errors by deep learning. In
AAAI, 2017. URL http://aaai.org/ocs/index
.php/AAAI/AAAI17/paper/view/14603.

Gupta, R., Kanade, A., and Shevade, S. K. Deep reinforce-
ment learning for programming language correction. In
AAAI, 2019. URL https://doi.org/10.1609/
aaai.v33i01.3301930.

https://engineering.fb.com/2018/11/06/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically/
https://engineering.fb.com/2018/11/06/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically/
https://engineering.fb.com/2018/11/06/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically/
https://engineering.fb.com/2018/11/06/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically/
https://github.com/AI-nstein/hoppity
https://github.com/AI-nstein/hoppity
https://www.digitalocean.com/community/tutorials/copying-objects-in-javascript/
https://www.digitalocean.com/community/tutorials/copying-objects-in-javascript/
https://www.digitalocean.com/community/tutorials/copying-objects-in-javascript/
https://github.com/lin-tan/CoCoNut-Artifact/issues/3
https://github.com/lin-tan/CoCoNut-Artifact/issues/3
https://github.com/lin-tan/CoCoNut-Artifact/issues/3
https://eslint.org/users
https://eslint.org/users
https://www.npmjs.com/package/eslint
https://www.npmjs.com/package/eslint
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://www.pylint.org/
https://www.pylint.org/
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://doi.org/10.1145/3385412.3385997
https://doi.org/10.1145/3385412.3385997
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
http://proceedings.mlr.press/v119/alon20a.html
http://proceedings.mlr.press/v119/alon20a.html
http://proceedings.mlr.press/v119/alon20a.html
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3360585
https://openreview.net/forum?id=Bke4KsA5FX
https://openreview.net/forum?id=Bke4KsA5FX
https://doi.org/10.1145/3428283
https://doi.org/10.1145/3428283
https://doi.org/10.1109/ICSE.2013.6606625
https://doi.org/10.1109/ICSE.2013.6606625
http://arxiv.org/abs/1512.07423
https://openreview.net/forum?id=SJeqs6EFvB
https://openreview.net/forum?id=SJeqs6EFvB
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.18653/v1/p16-1154
https://doi.org/10.18653/v1/p16-1154
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603
https://doi.org/10.1609/aaai.v33i01.3301930
https://doi.org/10.1609/aaai.v33i01.3301930

TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer

Hellendoorn, V. J., Sutton, C., Singh, R., Maniatis, P., and
Bieber, D. Global relational models of source code. In
ICLR, 2020. URL https://openreview.net/f
orum?id=B1lnbRNtwr.

Hua, J., Zhang, M., Wang, K., and Khurshid, S. Towards
practical program repair with on-demand candidate gen-
eration. In ICSE, 2018. URL https://doi.org/10
.1145/3180155.3180245.

Kanade, A., Maniatis, P., Balakrishnan, G., and Shi, K.
Learning and evaluating contextual embedding of source
code. In ICML, 2020. URL http://proceedings.
mlr.press/v119/kanade20a.html.

Karampatsis, R., Babii, H., Robbes, R., Sutton, C., and
Janes, A. Big code != big vocabulary: open-vocabulary
models for source code. In ICSE, 2020. URL https:
//doi.org/10.1145/3377811.3380342.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015. URL http://arxiv.
org/abs/1412.6980.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. M.
Opennmt: Open-source toolkit for neural machine trans-
lation. In ACL System Demonstrations, 2017. URL
https://doi.org/10.18653/v1/P17-4012.

Long, F. and Rinard, M. Automatic patch generation by
learning correct code. In POPL, 2016. URL https:
//doi.org/10.1145/2837614.2837617.

Lutellier, T., Pham, H. V., Pang, L., Li, Y., Wei, M., and Tan,
L. Coconut: combining context-aware neural translation
models using ensemble for program repair. In ISSTA,
2020. URL https://doi.org/10.1145/3395
363.3397369.

Mechtaev, S., Yi, J., and Roychoudhury, A. Angelix: scal-
able multiline program patch synthesis via symbolic anal-
ysis. In ICSE, 2016. URL https://doi.org/10.1
145/2884781.2884807.

Monperrus, M. Automatic software repair: A bibliography.
ACM Comput. Surv., 51(1):17:1–17:24, 2018. URL ht
tps://doi.org/10.1145/3105906.

Myers, E. W. An O(ND) difference algorithm and its
variations. Algorithmica, 1(2):251–266, 1986. URL
https://doi.org/10.1007/BF01840446.

Nguyen, H. D. T., Qi, D., Roychoudhury, A., and Chandra,
S. Semfix: program repair via semantic analysis. In ICSE,
2013. URL https://doi.org/10.1109/ICSE
.2013.6606623.

Pradel, M. and Sen, K. Deepbugs: a learning approach to
name-based bug detection. Proc. ACM Program. Lang.,
2(OOPSLA):147:1–147:25, 2018. URL https://do
i.org/10.1145/3276517.

Pu, Y., Narasimhan, K., Solar-Lezama, A., and Barzilay, R.
sk p: a neural program corrector for moocs. In Software
for Humanity, SPLASH 2016, 2016. URL https://do
i.org/10.1145/2984043.2989222.

Qi, Z., Long, F., Achour, S., and Rinard, M. C. An analysis
of patch plausibility and correctness for generate-and-
validate patch generation systems. In ISSTA, 2015. URL
https://doi.org/10.1145/2771783.2771
791.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. JMLR, 21:140:1–140:67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

Rolim, R., Soares, G., Gheyi, R., and D’Antoni, L.
Learning quick fixes from code repositories. CoRR,
abs/1803.03806, 2018. URL http://arxiv.org/
abs/1803.03806.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. In ACL,
2016. URL https://doi.org/10.18653/v1/
p16-1162.

Smith, E. K., Barr, E. T., Goues, C. L., and Brun, Y. Is
the cure worse than the disease? overfitting in automated
program repair. In FSE, 2015. URL https://doi.
org/10.1145/2786805.2786825.

Sobreira, V., Durieux, T., Madeiral, F., Monperrus, M.,
and de Almeida Maia, M. Dissection of a bug dataset:
Anatomy of 395 patches from defects4j. In SANER, 2018.
URL https://doi.org/10.1109/SANER.20
18.8330203.

Sui, Y., Cheng, X., Zhang, G., and Wang, H. Flow2vec:
value-flow-based precise code embedding. Proc. ACM
Program. Lang., 4(OOPSLA):233:1–233:27, 2020. URL
https://doi.org/10.1145/3428301.

Tarlow, D., Moitra, S., Rice, A., Chen, Z., Manzagol, P.,
Sutton, C., and Aftandilian, E. Learning to fix build errors
with graph2diff neural networks. In ICSE Workshops,
2020. URL https://doi.org/10.1145/3387
940.3392181.

Vasic, M., Kanade, A., Maniatis, P., Bieber, D., and Singh,
R. Neural program repair by jointly learning to localize
and repair. In ICLR, 2019. URL https://openrevi
ew.net/forum?id=ByloJ20qtm.

https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
https://doi.org/10.1145/3180155.3180245
https://doi.org/10.1145/3180155.3180245
http://proceedings.mlr.press/v119/kanade20a.html
http://proceedings.mlr.press/v119/kanade20a.html
https://doi.org/10.1145/3377811.3380342
https://doi.org/10.1145/3377811.3380342
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/3105906
https://doi.org/10.1145/3105906
https://doi.org/10.1007/BF01840446
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1145/3276517
https://doi.org/10.1145/3276517
https://doi.org/10.1145/2984043.2989222
https://doi.org/10.1145/2984043.2989222
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1145/2771783.2771791
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1803.03806
http://arxiv.org/abs/1803.03806
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1109/SANER.2018.8330203
https://doi.org/10.1109/SANER.2018.8330203
https://doi.org/10.1145/3428301
https://doi.org/10.1145/3387940.3392181
https://doi.org/10.1145/3387940.3392181
https://openreview.net/forum?id=ByloJ20qtm
https://openreview.net/forum?id=ByloJ20qtm

TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer

Wang, K. and Su, Z. Blended, precise semantic program
embeddings. In PLDI, 2020. URL https://doi.or
g/10.1145/3385412.3385999.

Wang, K., Singh, R., and Su, Z. Dynamic neural program
embeddings for program repair. In ICLR, 2018. URL
https://openreview.net/forum?id=BJuW
rGW0Z.

Wei, J., Goyal, M., Durrett, G., and Dillig, I. Lambdanet:
Probabilistic type inference using graph neural networks.
In ICLR, 2020. URL https://openreview.net
/forum?id=Hkx6hANtwH.

Williams, R. J. and Zipser, D. A learning algorithm
for continually running fully recurrent neural networks.
Neural Comput., 1(2):270–280, 1989. URL https:
//doi.org/10.1162/neco.1989.1.2.270.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Transformers: State-of-the-
art natural language processing. In EMNLP Demos, 2020.
URL https://doi.org/10.18653/v1/2020
.emnlp-demos.6.

Xuan, J., Martinez, M., Demarco, F., Clement, M., Marcote,
S. R. L., Durieux, T., Berre, D. L., and Monperrus, M.
Nopol: Automatic repair of conditional statement bugs
in java programs. IEEE Trans. Software Eng., 43:34–55,
2017. URL https://doi.org/10.1109/TSE.
2016.2560811.

Yasunaga, M. and Liang, P. Graph-based, self-supervised
program repair from diagnostic feedback. In ICML, 2020.
URL http://proceedings.mlr.press/v119
/yasunaga20a.html.

Ye, H., Martinez, M., Durieux, T., and Monperrus, M. A
comprehensive study of automatic program repair on the
quixbugs benchmark. J. Syst. Softw., 171:110825, 2021.
URL https://doi.org/10.1016/j.jss.20
20.110825.

Yin, P., Neubig, G., Allamanis, M., Brockschmidt, M., and
Gaunt, A. L. Learning to represent edits. In ICLR, 2019.
URL https://openreview.net/forum?id=
BJl6AjC5F7.

Zügner, D., Kirschstein, T., Catasta, M., Leskovec, J., and
Günnemann, S. Language-agnostic representation learn-
ing of source code from structure and context. In ICLR,
2021. URL https://openreview.net/for
um?id=Xh5eMZVONGF.

https://doi.org/10.1145/3385412.3385999
https://doi.org/10.1145/3385412.3385999
https://openreview.net/forum?id=BJuWrGW0Z
https://openreview.net/forum?id=BJuWrGW0Z
https://openreview.net/forum?id=Hkx6hANtwH
https://openreview.net/forum?id=Hkx6hANtwH
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1109/TSE.2016.2560811
http://proceedings.mlr.press/v119/yasunaga20a.html
http://proceedings.mlr.press/v119/yasunaga20a.html
https://doi.org/10.1016/j.jss.2020.110825
https://doi.org/10.1016/j.jss.2020.110825
https://openreview.net/forum?id=BJl6AjC5F7
https://openreview.net/forum?id=BJl6AjC5F7
https://openreview.net/forum?id=Xh5eMZVONGF
https://openreview.net/forum?id=Xh5eMZVONGF

A. More Case Studies
In this section, we present eight additional case studies of
TFix. TFix exactly matches the human fixes in the commits
in four cases, removes the coding errors but does not per-
fectly match human fixes in two cases, and fails to generate
a correct fix in the remaining two cases.

Exact matches The first case is shown in Figure 7, the
developer forgot to write the return keyword in a getter
function, causing a getter-return error in ESLint. As a
result, the function does not return anything even though it
can still run. TFix correctly inserts the missing return.

Figure 8 presents the second case. The developer declared
variable value to be a constant type with the const key-
word but then assigned a new value to it. This resulted
in a no-const-assign error reported by ESLint. TFix
changes const to let, successfully fixing the error. Note
that the fix line is different from the error line in this exam-
ple, showing the importance of the error context.

In Figure 9, the developer directly compared counter to
NaN, which is a wrong way of checking if a variable is a
valid value in JavaScript. The correct way is to use the
library function isNaN, as suggested by TFix.

In the fourth case, as shown in Figure 10, the developer
intended to check if this.debug is true but wrongly
wrote an assignment in the if condition, which is a
common programming mistake. Therefore, ESLint re-
ported a no-cond-assign error. TFix fixes it by using
this.debug solely as the condition.

The above four cases show that TFix is capable of generating
human-like fixes for a wide range of errors.

Error removals Now we discuss two cases where TFix
synthesizes fixes that correctly remove the errors but are
different from human fixes. The first case is shown in Fig-
ure 11 where the developer used the throw statement on a
string literal, causing a no-throw-literal error. Later,
the developer fixed the error by printing the error message to
the console. On the other hand, TFix proposes to construct
and throw an Error instance, which is also correct.

The second case is shown in Figure 12 and the code contains
a guard-for-in error for the same reason as discussed in
Section 2. While the developer fixed the error by converting
for-in to forEach, TFix proposes to add an if-check for
the property. Both fixes remove the error correctly.

The above two cases show that TFix can generate correct
fixes that are syntactically different from but functionally
the same as human fixes.

Failures Next, we describe two cases where TFix could
not generate a correct fix. In the first case, shown in Fig-
ure 13, the programmer assigned a value to itself, which
does not make sense from a programming perspective. ES-
Lint denotes such errors with no-self-assign. In the
commit, the variable was assigned to the correct variable,
namely modified . TFix failed to generate a correct fix
due to its fixed windows size, i.e., the variable modified
is not in the error context. Increasing the window size can
potentially resolve this failure.

The second case is shown in Figure 14. The erroneous code
contains an empty catch block, and the developer fixed
it by simply printing the caught error to console. Unfortu-
nately, TFix generates a fix identical to the incorrect code
and is unable to solve the problem. The reason might be that
similar samples do not often occur in our fine-tuning dataset.
Enlarging the fine-tuning dataset can help TFix handle more
errors.

get [Symbol.iterator]() {

this.__data__[Symbol.iterator]();

}

get [Symbol.iterator]() {

return this.__data__[Symbol.iterator]();

}

Figure 7. TFix fixes a getter-return error by inserting the missing return keyword.

const { value =’’ } = e.detail || {};

value = this.getValue(newValue);

this._trigger(’onChange’, { detail: {value } });

let { value =’’ } = e.detail || {};

value = this.getValue(newValue);

this._trigger(’onChange’, { detail: {value } });

Figure 8. TFix fixes a no-const-assign error by changing the variable’s declaration type.

var randomCounter = false;

if (counter == NaN) {

counter = Math.floor(Math.random * 10000);

var randomCounter = false;

if (isNaN(counter)) {

counter = Math.floor(Math.random * 10000);

Figure 9. TFix fixes a use-isnan error by using the correct function supported by JavaScript.

var signal = JSON.parse(message.content);

if(this.debug = true)

console.log(message);

var signal = JSON.parse(message.content)

if(this.debug)

console.log(message);

Figure 10. TFix fixes a no-cond-assign error by correcting the condition.

Coding error:

if (destination == null) {

throw "destination is invalid";

}

Human fix:
if (destination == null) {

console.log("destination is invalid");

}

Output of TFix:

if (destination == null) {

throw new Error("destination is invalid");

}

Figure 11. TFix correctly fixes a no-throw-literal error by
constructing an Error instance while the human developer prints
the error message to console.

Coding error:

applyCss(obj) {

for (var key in obj) {

this.element.style[key] = obj[key];

Human fix:
applyCss(obj) {

Object.keys(obj).forEach(key) => {

this.element.style[key] = obj[key];

Output of TFix:

applyCss(obj) {

for (var key in obj) {

if (!obj.elements.hasOwnProperty(key)) continue;

this.element.style[key] = obj[key];

Figure 12. TFix correctly fixes a guard-for-in error by adding
an if-check while the human developer uses forEach.

Coding error:

{

modified = modified;

}

Human fix:
{

modified = modified_;

}

Output of TFix:

{

this.modified = parseInt(false);

}

Figure 13. TFix generates irrelevant code as a fix.

Coding error:

} catch (e) {

}

Human fix:
} catch (e) {

log.warn(error);

}

Output of TFix:

} catch (e) {

}

Figure 14. TFix generates a fix identical to the erroneous code.

B. Running Data Extraction on an Example
In this section, we explain our data extraction pipeline in
Algorithm 1 in more detail by running it on a simple, synthe-
sized commit. The process is similar in principle but more
complicated in detail for real-world commits.

Example commit with error fixing Figure 15 shows our
example commit (p, p′). From p to p′, the commit removes
Line 6, adds Line 7, and adds a new return token at Line 9.
First, TFix runs detector to detect errors on p and p′ (Line
3 of Algorithm 1). For p, detector detects a set of three
errors E = {e1, e2, e3}:

e1: no-this-before-super at Line 3.

e2: getter-return at Line 9.

e3: no-throw-literal at Line 13.

e2 is fixed in the commit with the newly added return

token. Therefore, for p′, detector identifies two errors
E = {e′1, e′2}:

e′1: no-this-before-super at Line 3.

e′2: no-throw-literal at Line 13.

Since |E| > |E ′| (Line 4 of Algorithm 1), we proceed the
extraction procedure as the commit contains an error fix.

Finding fixed errors with bipartite matching Next
TFix calls the findFixedErrors function to identify the
set of errors Efixed ⊆ E fixed in the commit (Line 5 of
Algorithm 1). To achieve this, findFixedErrors first in-
vokes the greedy bipartite matching procedure between E
and E ′ to find the set of unfixed errors Eunfixed ⊆ E . We
iterate all pairs of errors in E and E ′ to see if they are the
same error. Clearly, e1 = e′1 and e3 = e′2. Therefore,
Eunfixed = {e1, e3} and Efixed = E − Eunfixed = {e2}.

Computing target fix Then we compute the fix for e2

with the computeFix function (Line 7 of Algorithm 1). We
first leverage the Myers diff algorithm to obtain a series of
three edit operations:

1. Delete a whole line (Line 6).

2. Insert a new line (Line 7).

3. Insert return at Line 9 after the second tab.

We perform the above edit operations starting from p and
track how the error line lk of e2 (Line 9) shifts with each
edit operation to obtain the target fix line lk′ . The deletion

1 class HumanPlayer extends Player {

2 constructor(name) {

3 this.name = name;

4 this.health = 100;

5 }

6 - set health (health) { this.health = health; }

7 + get health () { return this.health; }

8 get name() {

9 +return this.name;

10 }

11 damage(x) {

12 if (x < 0) {

13 throw "No negative damage";

14 }

15 this.health -= x;

16 }

17 }

Figure 15. An example commit fixing a getter-return error.

at Line 6 pulls lk up by one line while the insertion at Line 7
pushes it down again, so we compute that lk′ stays at Line 9.
In the end, we obtain the following error context Lk and fix
context Lk′ as a sample in our dataset:

get name() {

this.name;

}

get name() {

return this.name;

}

