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Abstract
We introduce a new approach for finding and fixing naming
issues in source code. The method is based on a careful
combination of unsupervised and supervised procedures: (i)
unsupervised mining of patterns from Big Code that express
common naming idioms. Program fragments violating such
idioms indicates likely naming issues, and (ii) supervised
learning of a classifier on a small labeled dataset which filters
potential false positives from the violations.
We implemented our method in a system called Namer

and evaluated it on a large number of Python and Java pro-
grams. We demonstrate that Namer is effective in finding
naming mistakes in real world repositories with high preci-
sion (∼70%). Perhaps surprisingly, we also show that exist-
ing deep learning methods are not practically effective and
achieve low precision in finding naming issues (up to ∼16%).

CCS Concepts: • Software and its engineering → Soft-
ware defect analysis; • Theory of computation → Pro-
gram analysis.

Keywords: Name-based program analysis, Static analysis,
Bug detection, Anomaly detection, Machine learning
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1 Introduction
Names in source code are important as they often convey pro-
gram semantics and capture developers’ intention, helping
with tasks such as code understanding [8], completion [7],
and debugging [38]. Names also play a key role in code qual-
ity and software maintenance [18], while some naming prob-
lems are misuses and even bugs [9, 28, 41]. The importance of
names is reassured by many works in academia [30, 34] and
industry [41]. Thus, a system able to automatically detect
and fix naming issues is highly desirable.

Key challenge. While important, detecting and fixing
naming issues in programs is a difficult task. Conventional
methods such as abstract interpretation [21], symbolic exe-
cution [19], or testing [1], do not capture names and thus fail
to detect naming issues. Indeed, since identifier names are
closer to natural language, differentiating between good and
bad names inherently requires statistical reasoning [13, 40].
Statistical naming issue detectors are ideally built on a large
scale supervised dataset where real programs are labeled
with having naming issues or not. However, to the best of
our knowledge, such a large dataset does not exist and is
hard to obtain with either manual or automatic approaches.
To address this challenge, existing works rely on either

generating synthetic mistakes or on methods where labels
are not required. Deep neural networks are currently trained
and tested on large labeled datasets constructed by inject-
ing synthetic defects in programs [9, 28, 45, 47]. However,
despite achieving high test accuracy, we found these meth-
ods to have low precision in finding real world issues (dis-
cussed in § 5.6). While initially surprising, further thought
reveals that the issue is caused by the fundamental problem
of distribution mismatch: the distribution induced by gen-
erating synthetic defects does not match the distribution of
real world mistakes. Alternatively, anomaly detection based
approaches do not require labeled data but often require sub-
stantial manual effort for creating effective rules and tuning
appropriate thresholds [34, 38, 41]. As a result, these systems
are often limited to certain types of bugs (e.g., wrong usages
of argument names) and language (e.g., Java).

https://doi.org/10.1145/3453483.3454045
https://doi.org/10.1145/3453483.3454045
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Figure 1. Our recipe for finding and fixing naming issues.

This work. In this work, we propose a new recipe for
learning to detect naming issues. The key idea is to split the
learning procedure into two steps, see top of Figure 1: (i)
mine name patterns, interpretable naming rules that capture
a diverse set of naming idioms, from a large dataset of pro-
grams (i.e., Big Code), and (ii) train a binary classifier that
uses high-level expressive features and predicts whether a
violation of a name pattern is an issue. Importantly, step (i)
does not require programs to be labeled with having issues
or not, while step (ii) only requires a small labeled dataset,
which is feasible to produce manually. This combination ob-
viates the need to provide synthetic data and ensures that
one trains and tests on the same real world data. To use
the method at inference time, we follow the steps shown
at the bottom of Figure 1. Given a program fragment (with
its representation): (i) we query the mined name patterns
to check if the fragment violates any of them, and (ii) if it
does, we query our learned binary classifier. A naming issue
is reported only if the classifier predicts the violation to be
true. The suggested fix is to change the relevant parts of the
fragment so the originally violated pattern is satisfied.
We implemented our recipe in a system called Namer

and evaluated it on both statically typed (Java) and dynam-
ically typed (Python) languages. We show that Namer is
significantly more effective at finding naming issues than
state-of-the-art deep networks trained on synthetic defects.

Main contributions. Our key contributions are:

• A novel method for detecting and fixing naming issues in
code consisting of interpretable name patterns mined from
Big Code which capture a diverse set of naming idioms
(§ 3.2, § 3.3), and a machine learning classifier with expres-
sive, high-level features to filter false positives (§ 4.2).

• An end-to-end implementation of our method in a tool
called Namer. Namer supports Python and Java, leverages
powerful static analyses for extracting semantic informa-
tion, and is readily applicable to other languages (§ 5.1).

• An extensive evaluation of Namer on a large, real world
dataset containing millions of files from GitHub, demon-
strating that Namer achieves high precision (∼70%) and is
practically effective (§ 5). Our evaluation also shows that
despite being accurate on programs with synthetic defects,
current deep learning techniques [9, 28] achieve very low
precision (i.e., up to ∼16%) on detecting real issues (§ 5.6).

2 Overview
In this section, we provide an overview of Namer on an
illustrative example.We run the inference pipeline in Figure 1
to show how Namer finds and fixes a naming issue.

Example program. In Figure 2 (a), we present a code snip-
pet taken from an open-source Python project hosted on
GitHub1. This snippet defines a class TestPicture inheriting
from TestCase, which is from the unittest library and is
used for representing test units. The TestPicture class con-
tains a function test_angle_picture that calls assertTrue, a
function from the parent class TestCase, with two arguments
picture.rotate_angle and 90. We underline the described
call statement in the figure.

The use of assertTrue in Figure 2 (a) is incorrect. Based on
the documentation [6], the second argument of assertTrue
is an optional error message to display instead of a value to
compare to. Therefore, we can infer that this code calls the
wrong API function, which will cause unexpected behavior
at runtime. Based on the code context, the correct function
to call is assertEqual, which checks whether the values of
the first two arguments are equal. Namer finds this bug and
suggests to replace assertTrue with assertEqual. Next, we
run the pipeline in Figure 1 on the buggy program statement
and describe in detail how Namer finds and fixes this bug.

Program statement to AST+. Namer first parses the in-
put program and obtains an abstract syntax tree (AST) for
each program statement. Figure 2(b) shows the AST for
the buggy statement in our example with the nodes for
picture.rotate_angle omitted for simplicity. Then the fol-
lowing transformations are applied on the parsed tree to
obtain a transformed tree (AST+) as shown in Figure 2(c):
1. Replace integer values (i.e., 90) with a special token NUM.
2. Add a special node NumArgs(2) as the parent of the func-

tion call node Call, showing that the function call has two
arguments (i.e., picture.rotate_angle and NUM).

3. Split each terminal node into subtokens based on standard
naming conventions and insert a node NumST(k) where k
is the number of subtokens in the original node. In the
example, assertTrue is split into assert and True, and
NumST(2) is inserted as a parent of the subtoken nodes.
The nodes with value NumST(1) are added for node self

and node NUM because they are unsplittable and contain
only one subtoken.

These transformations allow Namer to detect naming issues
on the subtoken level and make decisions based on additional
information such as the number of function arguments.
Then, Namer applies an additional semantic transforma-

tion. Namer runs interprocedural points-to and data flow
analyses which track the origin of each object and decorates

1https://github.com/paulhildebrandt/python-keynote/blob/master/tests/
test_keynote_api.py

https://github.com/paulhildebrandt/python-keynote/blob/master/tests/test_keynote_api.py
https://github.com/paulhildebrandt/python-keynote/blob/master/tests/test_keynote_api.py
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class TestPicture(TestCase ):

... // other functions in the class

def test_angle_picture(self):

rotated_picture_name = "IMG_2259.jpg"

for picture in self.slide.pictures:

if picture.relative_path \

== rotated_picture_name:

picture = self.slide.pictures [0]

self.assertTrue(picture.rotate_angle , 90)

break

(a) An example Python program from GitHub.

Call

...AttributeLoad

NameLoad Attr

self assertTrue

Num

90

(b) A parsed AST.

NumArgs(2)

Call

...AttributeLoad

NameLoad Attr

NumST(1) NumST(2)

TestCase TestCase TestCase

self assert True

Num

NumST(1)

NUM

(c) A transformed AST (AST+).

NumArgs(2) 0 Call 0 AttributeLoad 0 NameLoad 0 NumST(1) 0 TestCase 0 self

NumArgs(2) 0 Call 0 AttributeLoad 1 Attr 0 NumST(2) 0 TestCase 0 assert

NumArgs(2) 0 Call 0 AttributeLoad 1 Attr 0 NumST(2) 1 TestCase 0 True

NumArgs(2) 0 Call 2 Num 0 NumST(1) 0 NUM

...

(d) Name paths extracted for the transformed AST in Figure 2(c).

Condition:
NumArgs(2) 0 Call 0 AttributeLoad 0 NameLoad 0 NumST(1) 0 TestCase 0 self

NumArgs(2) 0 Call 0 AttributeLoad 1 Attr 0 NumST(2) 0 TestCase 0 assert

NumArgs(2) 0 Call 2 Num 0 NumST(1) 0 NUM

Deduction:
NumArgs(2) 0 Call 0 AttributeLoad 1 Attr 0 NumST(2) 1 TestCase 0, Equal

(e) A name pattern violated by the name paths in Figure 2(d).

Figure 2. Overview of Namer on an example program.

the AST with semantic information obtained from the anal-
yses results. For our example program, the analyses identify
that the origin of the object self is TestCase. Namer then
incorporates the analysis results in the AST. In Figure 2(c),
Namer inserts nodes with value TestCase (filled with green )
as the parents of node self, assert and True. The analyses
are described in § 4.1. We show in § 5 that running the anal-
yses is a key factor for Namer to achieve high precision.

AST+ to name paths. Namer then traverses the trans-
formed AST in a top-down fashion to extract name paths, our
program abstraction for identifier name usages. A name path
represents a path from the tree root to a leaf subtoken. In
Figure 2 (d), we show a list of name paths extracted from the
transformed AST in Figure 2(c). Each name path contains
two parts. The first part is a list where each element con-
sists of a node and the index of the next node in the current
node’s children list. The second part of a name path is a leaf
subtoken. For instance, the first line represents the name
path from the tree root to the leaf self. Along this path, the
first child is always selected so the indices are all zero. We
formally define name paths in § 3.1.
Compared to existing syntactically constructed path ab-

stractions [11–13, 33], our name paths contain richer seman-
tic information from the transformed ASTs and have finer
granularity as they can be used for modeling subtokens.

Pattern matching. The extracted name paths are then
checked against a set of interpretable naming rules called
name patterns. The name patterns are automatically mined
from a large dataset of open source repositories and capture
a wide range of common naming idioms. If the name paths
violate any of the name patterns, then the statement deviates

from common naming behaviors and a potential naming
issue is detected by Namer. Moreover, the violated name
pattern suggests how to fix the issue: modify the statement
so that the violated pattern becomes satisfied. We formally
define name patterns in § 3.2 and describe the mining algo-
rithm in § 3.3. In Figure 2(e), we show an example name
pattern which consists of two sets of name paths, the con-
dition and the deduction. At a high level, the name pattern
indicates if a program statement calls a function that satisfies
the following three requirements, as specified by the three
name paths in the condition:

1. the receiver is self and is an instance of TestCase, and
2. the first subtoken of the function name is assert, and
3. the second function argument is a numerical value,

then the second subtoken of the function name should be
Equal, as specified by the name path in the deduction. Our
example statement self.assertTrue(picture.rotate_angle,
90) violates the name pattern in Figure 2 (e) because its name
paths satisfy the condition but contradict with the deduction.
The violation exhibits a potential naming issue and the fix
suggested by Namer is to replace True with Equal.

Classifying violated patterns. So far, the mined name
patterns can already identify anomalous naming behaviors
and report them as naming issues. Balancing the tradeoff
between recall and precision is known to be difficult for
anomaly detectors [38, 41], especially when our mining pro-
cess is performed on millions of source files. As a result, with
different choices of hyperparameters in the matching and
mining processes, the mined patterns will either find very
few issues because the violations are rarely triggered, or will
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inevitably have lower precision because more violations are
triggered on less anomalous code.
In Namer, we allow violations to be triggered at lower

confidence so that most issues are not missed. Then, to prune
false positives from the triggered violations, we build a binary
defect classifier that uses various statistical measures from
the violations as features. The classifier outputs true if the
report should be reported to the user as a naming issue,
or false otherwise. We describe the classifier in § 4.2. Our
evaluation in § 5 shows that the classifier is a crucial element
for Namer to achieve a high precision.

Issues handled by Namer. Namer targets a wide range
of program elements (e.g., variables, functions, API calls,
types, etc.) and usually reveals issues (e.g., indescriptive
names, wrong API usages, wrong types, etc.) where the
names of the elements do not correctly capture the under-
lying code semantics. On the AST level, Namer targets all
terminal nodes with code names. Examples of naming issues
detected by Namer are shown in Tables 3 and 6. In Fig-
ure 2, we show a semantic defect that causes an unexpected
program behavior. The vast majority of Namer’s reports
are code quality issues that may impair code readability and
maintainability.

3 Program Abstraction for Names
In this section, we describe our program abstractions for
code names. We start by defining how we augment abstract
syntax trees (ASTs) with results of program analyses and
then how we extract name paths from these ASTs. Next,
we define name patterns for representing common usages
of identifier names. Finally, we present the algorithms for
mining name patterns from a large dataset of code.

3.1 Abstract Syntax Tree and Name Path
We start by formally defining ASTs for program statements.
Intuitively, this is part of the abstract syntax tree of the whole
program, projected on a specific statement only.

Definition 3.1 (Abstract Syntax Tree). An Abstract Syntax
Tree (AST) for a program statement is a tuple ⟨N ,T , r , δ ,V ,ϕ⟩,
where N is a set of non-terminal nodes, T is a set of termi-
nal nodes, r ∈ N is the root node, δ : N → (N ∪ T )+ is a
function mapping a non-terminal node to the list of child
nodes, V is a set of node values, and ϕ : (N ∪T ) → V is a
function mapping a node (either terminal or non-terminal)
to its associated value. A parsed AST is shown in Figure 2 (b).

Given a parsed AST, Namer performs the following steps
to obtain a transformed AST:

1. Transform all numerical values into a special token NUM,
all string values into STR, and all boolean values into BOOL

to improve generalization.
2. For each function definition or function call node n, insert

a node n′ with value NumArgs(k) between n and n’s parent,

where k is the number of arguments in the definition or
the call.

3. For each terminal node n whose value is an identifier
name, split the name into subtokens based on standard
naming conventions such as camelCase and snake_case.
Then, replace n by a non-terminal node n′ with value
NumST(k), where k is the number of produced subtokens.
The subtokens are appended as n′’s children.

4. For each terminal node representing an object name, insert
a node whose value is the origin of the object as the parent.
For each terminal node representing a function call, insert
a node whose value is the origin of the receiver object (if
any) as the parent. The information about object origin
is obtained via interprocedural points-to and data flow
analyses described later in § 4.1.

Note that due to variadic or keyworded arguments, calls
to the same function may have a different number of ar-
guments. Such cases are captured by the AST and are not
treated specially. The pattern mining process in § 3.3 will au-
tomatically learn the behaviors of such functions. We show
an example of transformed ASTs in Figure 2 (c). Transformed
ASTs contain more fine-grained (e.g., subtokens), semantic
information (e.g., results from static analyses) than parsed
ASTs, which strengthens the precision of our name path and
name pattern abstractions. Given a transformed AST, the
next step is to extract name paths defined in the following.

Definition 3.2 (Name path). A name path extracted from
a (transformed) AST is a tuple ⟨S,n⟩. We call S the prefix
and n the end node. S is a list of non-terminal nodes along
the path from the AST root to a terminal node. Formally,
S = [(nj , i j )]

k
j=1 where nj ∈ N is a non-terminal node in

the AST and i j ∈ N is an index, such that n1 = r (n1 is the
root node) and δ (nj )[i j ] = nj+1 (nj+1 is the i j th child of nj ).
Node n is either the concrete terminal node where the AST
path ends (δ (nk )[ik ] = n, i.e., n is the ik th child of nk ) or a
special symbolic node ϵ introduced for adding more degrees
of freedom to name patterns defined later in § 3.2. We call
the name path a concrete (resp., symbolic) name path if n is
concrete (resp., symbolic).

Example 3.3. In the following, we show three name paths
np1, np2 and np3. np1 and np2 are concrete name paths, and
np3 is a symbolic name path.

np1: NumArgs(2) 0 Call 0 AttributeLoad 1 Attr 0 NumST(2) 1 TestCase 0 True

np2: NumArgs(2) 0 Call 0 AttributeLoad 1 Attr 0 NumST(2) 1 TestCase 0 Equal

np3: NumArgs(2) 0 Call 0 AttributeLoad 1 Attr 0 NumST(2) 1 TestCase 0 ϵ

Definition 3.4 (Relational operators of name paths). Given
two input name paths np1 and np2, we define the following
two relational operators:

• np1 ∼ np2: is true if np1.S = np2.S . That is, if np1.S and
np2.S have the same length, and all corresponding ele-
ments in np1.S and np2.S are equal; is false otherwise.
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• np1 = np2: is true if np1 ∼ np2 ∧ (np1.n = ϵ ∨ np2.n =
ϵ ∨ np1.n = np2.n); is false otherwise.

Intuitively, np1 ∼ np2 requires that the prefixes of np1 and
np2 are the same. np1 = np2 additionally requires that the
end nodes of np1 and np2 are equal, or either np1.n or np2.n
is ϵ (that is, any value is equal to ϵ).

Example 3.5. In Example 3.3, np1 ∼ np2 holds, np1 = np2
does not hold, and both np1 ∼ np3 and np1 = np3 hold.

Each name path captures one name in the AST and a
program statement can be represented by a set of name paths
extracted from its AST. An example of name paths extracted
from a code statement is shown in Figure 2(d). The name
path representation makes it convenient to find common
properties of program statements for later construction of
name patterns, common coding idioms that generalize across
statements. We note that the set of name paths A extracted
from a program statement must satisfy two properties: ∀a ∈

A. a.n , ϵ , i.e., all name paths inA are concrete, and∀a1,a2 ∈
A. a1.S , a2.S , i.e., all prefixes of the name paths in A are
different. These properties are useful when we check the
name paths of a statement against name patterns.

3.2 Name Pattern
We now define name patterns which consist of name paths
and are used to represent the most common usage of identi-
fier names in a statement.

Definition 3.6 (Name pattern). A name pattern p consists
of two sets of name paths, condition C and deduction D.
Intuitively, a name pattern requires that if a statement in-
cludes certain name paths (defined by C), then name paths
that conform to D should also be present in this statement.
We provide three relationships between a name pattern p
and a given statement s represented by a set of name paths
A: match, satisfaction, and violation. In the following, we
define the match relationship and briefly introduce the other
two at a high level. We formally define the satisfaction and
violation relationships individually for two specific pattern
types introduced later in this section.

• Match: s matches p if ∀c ∈ C . ∃a ∈ A. c = a and ∀d ∈

D. ∃a ∈ A.d ∼ a, or intuitively, if all name paths in C
also exist in A and all prefixes of the name paths in D
also exist in A. For example, the name paths in Figure 2 (d)
match the name pattern in Figure 2(e). Note that there is
no requirement on the end nodes of name paths in the
deduction D.

• Satisfaction: s satisfying p means that s conforms to the
naming idiom represented by p.

• Violation: s violating p means that s violates the naming
idiom represented by p. Therefore, a potential naming
issue is revealed and the suggested fix is to modify the
statement so that its name paths satisfy p.

The definition of name patterns is generic and allows one to
define different types of patterns to capture different kinds
of naming idioms. Next, we introduce two types of name pat-
terns in Namer while leaving the addition of more patterns
as future work items. The first one is consistency name pat-
terns whose purpose is to ensure that code fragments with
the same underlying semantics should be named consistently,
which is an important aspect of code quality.

Definition 3.7 (Consistency name pattern). A consistency
name pattern requires that D = {d1,d2} (i.e., the deduction
D consists of two name paths d1 and d2), and both d1 and d2
are symbolic. The satisfaction and violation relationships of
consistency name patterns are defined as follows:

• Satisfaction: s satisfies p if s matches p and ∀a1,a2 ∈ A.
(a1.S = d1.S ∧ a2.S = d2.S) =⇒ (a1.n = a2.n). Intuitively,
it requires that any two name subtokens in the statement
prefixed by paths d1 and d2 must be equal.

• Violation: s violates p if s matches p but does not satisfy p.

Example 3.8. In the following, we show a simple consis-
tency name pattern which enforces that in a Python state-
ment of the form self.<name1> = <name2>, the two names
<name1> and <name2> must be equal.

Condition: Assign 0 AttributeStore 0 NameLoad 0 NumST(1) 0 Object 0 self

Deduction: Assign 0 AttributeStore 1 Attr 0 NumST(1) 0 ϵ

Assign 1 NameLoad 0 NumST(1) 0 Str 0 ϵ

The second type of name pattern used in Namer is the
confusing word name pattern. Its goal is to detect words that
developers tend tomistakenly use and to suggest a correction.
To obtain such patterns, we extract the pairs of mistaken and
correct words, referred to as confusing word pairs.

Confusing word pairs. A confusing word pair consists
of two words ⟨w1,w2⟩ where in some prior version of the
code, w1 was used instead of w2. We call w1 the mistaken
word andw2 the correct word. We discover confusing word
pairs from all of the (deduplicated) commits in our dataset.
First, we apply a diff matching algorithm [37] over the AST
of the program before and after the commit. For each pair
of matched nodes, the names are split into subtokens and if
there is one difference in the subtokens, the pair of subtokens
is added as a confusing word pair. We extracted 950K con-
fusing word pairs for Java and 150K for Python. Examples of
mined confusing word pairs are ⟨name, key⟩, ⟨value, key⟩,
⟨x, y⟩, ⟨min,max⟩, ⟨True, Equal⟩.

Definition 3.9 (Confusing word name pattern). A name
pattern is a confusing word name pattern if D = {d} (i.e., the
deductionD consists of a single name pathd) and there exists
a pair ⟨w1,w2⟩ in the set of mined confusing word pairs such
that d .n = w2. The satisfaction and violation relationships
of confusing word patterns are defined as follows:
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Algorithm 1:Mining name patterns.
1 Procedure minePatterns(proдs , t )

Input :proдs , a set of programs.
t , the type of the name patterns to mine.

Output :patterns , a set of mined name patterns.
2 asts = getStmtAsts(proдs)
3 tree = FPTree()
4 for ast in asts do
5 paths = getNamePaths(ast )
6 for cond , deduct in splitPaths(paths , t ) do
7 tree .update(sort(cond) + sort(deduct ))

8 patterns = genPatterns(tree .root, list(), t )
9 return pruneUncommon(patterns , asts)

• Satisfaction: s satisfies p if s matches p and ∀a ∈ A. a.S =
d .S =⇒ a.n = d .n. Intuitively, it requires that the name
subtoken prefixed by the name path d in the deduction
must be equal to the correct word.

• Violation: s violates p if s matches p but does not satisfy p.

Figure 2(e) shows an example of a confusing word pattern.

3.3 Mining Name Patterns from Big Code
After defining name patterns, the next question then is how
to obtain the most representative name patterns adopted by
most developers. We propose to mine name patterns from
a large dataset of open source repositories, i.e., Big Code.
To this end, we propose an algorithm based on the frequent
pattern trees (FP trees) mining methods [24, 32]. The orig-
inal procedures from [24, 32] treat all items the same. In
our scenario, name paths can be part of a condition or a
deduction. Therefore, in our algorithm, we split name paths
into condition paths and deduction paths. At a high level,
the algorithm iterates through programs in the open source
repositories and extracts name paths to grow the FP tree.
The nodes of the FP tree stores the extracted name paths
and their occurrence counts. After the growth of the FP tree,
we traverse the FP tree to generate the most common name
patterns based on the frequency information.
The algorithm minePatterns for mining name patterns

is outlined in Algorithm 1. minePatterns takes a set of pro-
grams from open source repositories and the type of pat-
terns to mine as input, and outputs a set of mined name
patterns. First, we obtain the transformed ASTs of the pro-
gram statements in the repositories by parsing the programs
and applying the transformation rules (Line 2), and initialize
the FP tree (Line 3). Then, we iterate through the obtained
ASTs to update the FP tree (Line 4 to 7). For each AST, we
extract the name paths by calling getNamePaths at Line 5.
The name paths are then split (with the splitPaths function at
Line 6) to condition (variable cond) and deduction (variable
deduct ). For the consistency name pattern, we treat pairs

Algorithm 2: Generating name patterns in FP tree.
1 Procedure genPatterns(node , paths , t )

Input :node , current node in the FP tree.
paths , a list of visited name paths.
t , the type of the name patterns to mine.

Output :patterns , a set of mined name patterns.
2 paths .append(node .path)
3 patterns = set()
4 if node .isLast then
5 deduct = getDeduction(paths , t )
6 conds = getConditons(paths , t )
7 for cond in combinations(conds) do
8 patterns .add((cond , deduct ))

9 for child in node .children() do
10 newPatterns = genPatterns(child , paths , t )
11 patterns = patterns ∪ newPatterns

12 return patterns

of name paths with the same end node as the deduction.
For the confusing word name pattern, we treat name paths
whose end node is equal to the correct word of a confusing
pair as the deduction. The name paths not treated as the
deduction are included in the condition. We iterate through
all possible ways to split (Line 6), put the sorted condition
and the sorted deduction into a single list, and update the
FP tree with the resulted list (Line 7). During the update, we
maintain the occurrence count of each node and set the flag
isLast (initialized to be false) of the last node in the input
list to true (not shown in Algorithm 1). The isLast flag is
used later to determine when to generate name patterns.
After the FP tree is constructed, we traverse its nodes to ex-
tract name patterns (Line 8) by calling a recursive algorithm
genPatterns described in the next paragraph. Given the ex-
tracted name patterns (variable patterns), we further call
pruneUncommon to prune uncommon patterns. To achieve
this, we iterate through asts in the input dataset and count
the number of matches and satisfactions for each pattern.
We only keep the patterns whose ratio between the number
of satisfactions and the number of matches is above a cer-
tain threshold (we used 0.8), which means that the pattern is
commonly adopted in the dataset.

genPatterns is shown in Algorithm 2. It maintains a list of
visited name paths in the function argument paths . First, the
current name path node .path is appended to paths at Line 2
and a set of mined patterns (variable patterns) is initialized
at Line 3. If the isLast flag of the current node is set to true
(Line 4), we construct new name patterns. To achieve this,
we need to assemble the deduction and condition of the
new patterns from paths . We obtain the deduction deduct
(by calling getDeduction on paths at Line 5) and a set of
name paths conds that can be included in the condition (by
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NP1 44

NP2 33 NP3 32

NP4 14 NP5 15

NP6 13

(a) An example of FP trees.

Condition Deduction Count

NP1 NP2 33
NP1, NP3 NP5 15
NP1, NP3 NP4 14
NP1, NP3, NP4 NP6 13

(b) Name patterns extracted by
traversing the FP tree example
in Figure 3 (a) with Algorithm 2.

Figure 3. Examples for our mining algorithm.

calling getCondtions on paths at Line 6). For the consistency
name pattern, we store the last two name paths of paths
in deduct and the other paths in conds . The end nodes of
the name paths in deduct are set to ϵ . For the confusing
word name pattern, we store the last name path of paths
in deduct and the other paths in conds . Next, we loop over
all possible combinations of name paths in conds (Line 7)
where each combination can be seen as a valid condition, and
add the newly extracted pattern to the set of mined patterns
(Line 8). The same procedure is performed recursively for
the descendants of the current node (Line 10).
We provide two examples below which illustrate the in-

termediate results of the algorithms.

Example 3.10 (A constructed FP tree). In Figure 3(a), we
show a FP tree constructed after Line 7 of Algorithm 1 for
mining confusing word name patterns. Each node represents
a name path and shows its occurrence count. Green denotes
nodes with the flag isLast set to true.

Example 3.11 (Results of running Algorithm 2). In Fig-
ure 3 (b), we show all the extracted name patterns by running
genPatterns on the FP tree in Figure 3(a). This result corre-
sponds to variable patterns before Line 9 of Algorithm 1.

4 Detecting Naming Issues
In this section, we describe the points-to and data flow anal-
yses for extracting the origins of objects, and the defect
classifier for pruning false positives.

4.1 Static Analyses for Name Path Context
To augment theASTs for each statement in a program, Namer
statically analyzes each source file of the program. Every file
is analyzed in isolation, assuming every public method or
function to be a possible entry point. Namer computes flow-
and context-sensitive Andersen style points-to analysis by
using k-call site sensitivity with k set by default to 5, unless
for a specific program this leads to a combinatorial explosion
of more than 8 contexts per method on average. Practically,
this happens for a few programs in our large dataset. Our
points-to analysis is implemented in Datalog. We refer the
reader to [44] for definitions of points-to analysis in Datalog.
Since our points-to analysis is performed on a per-file basis,
any function or method defined outside the file is considered

Table 1. Extracted features for a violation consisting a state-
ment s and a violated name pattern p.

Index Description

1 Number of name paths used to represent s
2 Number of statements identical to s on the file level
3 Number of statements identical to s on the repository level
4 Satisfaction rate of p on the file level
5 Satisfaction rate of p on the repository level
6 Satisfaction rate of p over the entire mining dataset
7 Number of violations for p on the file level
8 Number of violations for p on the repository level
9 Number of violations for p over the entire mining dataset
10 Number of satisfactions for p on the file level
11 Number of satisfactions for p on the repository level
12 Number of satisfactions for p over the entire mining dataset
13 Whether p targets on object name or function name
14 Number of name paths in p’s condition
15 Match ratio between p and s
16 Edit distance between the original name and the suggested name
17 Whether the original and suggested names form a confusing word pair

to return a fresh allocation site. As a result, the analysis is not
always sound, but this is not a requirement in our setting.

Using the results of the points-to computation, a dataflow
analysis is performed for primitive types. This allows us for
every variable, field, array access, and other action to obtain
possible origins. The origin of objects is their allocation
site. The origin of values is a function returning a value
or ⊤ if the value was modified after its creation. When the
origin sites are precisely computed (i.e. not abstracted to
⊤), this information is added to the AST. This effectively
provides an abstraction where placing results of expressions
into temporary variables, extracting methods, or doing other
simple refactorings does not affect the augmented tree.

4.2 Defect Classifier
A violation of the name patterns indicates a potential nam-
ing issue but can result in a false positive. This is because
when mining and matching name patterns, we increase the
likelihood to trigger more violations so that most issues are
not missed. Therefore, it is critical to prune false positives.
To this end, Namer feeds the violations of name patterns into
a machine learning procedure. Formally, given a program
statement s and a name pattern p, Namer invokes a feature
extraction function ϕ and a binary classifier ψ . Namer re-
ports the violation consisting of s and p as a naming issue if
and only ifψ (ϕ(s,p)) = true. Intuitively, the violations classi-
fied byψ as true are highly likely to be true naming issues so
they are reported. Those classified as false are recognized by
Namer as false positives so Namer abstains from reporting
them.ψ can be obtained by applying off-the-shelf learning
algorithms. To make the classification effective, the key then
is to extract a set of expressive features with ϕ.
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Features for violations. In Table 1, we show the list of
features extracted by ϕ for a violation. In general, these
features calculate the statistics of the violation and capture
the strength of the violation. In the following, we describe
the features one by one.
Feature 1-3 capture characteristics of the program state-

ment s . Feature 1 calculates the number of name paths ex-
tracted from s . The more name paths s has, the more complex
s is. Feature 2 and 3 count the number of statements identical
to s in the file and the repository, respectively. More identical
statements indicate a lower degree of anomaly.

Feature 4-14 measure various statistics of the violated pat-
tern p. Feature 4-6 calculate the satisfaction rate (the number
of satisfactions divided by the number of matches) of p in
the file containing the statement s , in the repository contain-
ing s , and over the entire dataset used for mining the name
patterns, respectively. A higher satisfaction rate indicates
that the naming idiom represented by p is more commonly
adopted. Feature 7-9 count the number of violations for p
and feature 10-12 count the number of satisfactions for p,
both over three different levels. The larger feature 7-9 are
or the smaller feature 10-12 are, the more common p is. Fea-
ture 13 is a boolean feature that checks whether p targets
an object name or a method name. The motivation here is
that during our early experiment, we found that most of the
false positives came from name patterns targeting method
names as inferring correct usages of method names typically
requires more contexts. Feature 14 counts the number of
name paths in p’s condition. The more name paths in the
condition, the more difficult to match p.
Feature 15-17 jointly consider the statement s and the

violated pattern p. Feature 15 is the match ratio between p
and s , i.e., the number of name paths in p’s condition divided
by the number of name paths in s minus the number of name
paths in p’s deduction. The higher the match ratio is, the
better p captures the structure of s , and the more likely the
violation is a true naming issue. Feature 16 calculates the edit
distance between the original name that violates the pattern
and the suggested name. Smaller edit distance indicates a
higher probability of a true naming issue (e.g., typo). Feature
17 is a boolean feature that checks whether the original name
and the suggested name form a confusing word pair.

Unlike deep learning approaches [9, 28, 39] which use low-
level embedding as initial features, all our features are high
level, enabling our classifier to be trained with a small man-
ually labeled dataset. Most of our features consider different
levels (i.e., file, repository, and the entire dataset), as opposed
to anomaly detection based approaches [34, 38, 41] which
rely only on a single or few measures. This is an important
design choice to make the classifier effective. As we show
in § 5.5, the same feature can have different contributions to
the final decision over different levels.

5 Experimental Evaluation
The evaluation of Namer focuses on four main questions:

• What is the precision of Namer on finding naming issues
in open source repositories?

• What is the impact of points-to and data flow analyses
(§ 4.1) and the defect classifier (§ 4.2)?

• What features are most important in the classifier?
• How does Namer compare to existing deep neural network
based approaches?

5.1 Implementation and Evaluation Setup
Namer currently supports Python and Java though our frame-
work is generic and can be applied to other languages.

Dataset. For both Python and Java, we obtained a large
real world dataset of open source repositories on GitHub [3].
The Python (resp., Java) dataset contains about 1 million
(resp., about 4 million) source files from 33, 144 (resp., 33, 308)
repositories. We selected the set of repositories based on the
highest number of stars. For finding confusing word pairs,
we also used the entire histories of these repositories. Aware
of code duplication on Github [35], we pruned our dataset
to make it free from project forks and file-level duplicates.

Mining name patterns. To obtain name patterns, we ran
the pattern mining algorithm introduced in § 3.3 over the en-
tire dataset. The statistics of the mined patterns are discussed
later in the evaluation. To avoid overfitting and strengthen
generalization, we adopted standard techniques [12] to reg-
ularize name paths and patterns.

• We limited the number of name paths for a statement by
simply keeping the first 10 paths.

• At Line 5 of Algorithm 1, we only returned frequent name
paths that occurred more than 10 times in our dataset. As
a result, over 99% of infrequent name paths were removed.

• At Line 6 of Algorithm 2, we limited the maximal number
of name paths used in conditions to 10.

• At Line 9 of Algorithm 1, to prune uncommon patterns,
we only returned name patterns that occurred more times
than a given threshold. We found that setting the threshold
to 100 for Python (500 for Java) yielded good results.

Training the classifier. To train the classifier, we need
a supervised dataset where violations are manually labeled
to true naming issues or false positives. In general, more
training data can help the classifier perform better but the
labeling process requires expensive human labor. Since we
use simple models and high-level features, a small training
set should be sufficient. For both Python and Java, we man-
ually labeled 120 violations, which strikes a good tradeoff
between precision and the amount of manual effort needed
for building the Namer tool.
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Among all labeled violations, one half were labeled true
and the other half were labeled false. We leveraged cross-
validation for model selection. We selected the support vec-
tor machine model with the linear kernel (the other choices
are logistic regression and linear discriminant analysis) as
it resulted in the best cross-validation results. We used fea-
ture standardization and principal component analysis as a
preprocessing step for the features.

Testing and metric. At test time, we ran the pattern
matching module of Namer over the entire Python and Java
dataset excluding the samples used for training the classi-
fier. For each dataset, we randomly selected 300 violations
and ran the trained classifier on the selected violations to
obtain the final reports of Namer. Then, we inspected all of
Namer’s bug reports and found that Namer is able to report
various kinds of naming issues. Following [39], we classify a
naming issue into two categories:

• Semantic defect: a naming issue is a semantic defect if the
name in the evaluated program causes unexpected pro-
gram behavior, is inconsistent with the program semantics,
or may introduce errors.

• Code quality issue: a naming issue is a code quality issue
if it is not a semantic defect but impairs code quality by
confusing the readers or is inconsistent with the naming
style in the file. It is strongly recommended to fix those
issues to improve code readability.

If a report does not belong to the above two categories, we
mark it as a false positive. We provide examples of semantic
defects, code quality issues, and false positives in Tables 3
and 6. We calculate precision as the number of reported nam-
ing issues (including semantic defects and code quality is-
sues) divided by the total number of reports. Note that unlike
standard bugs (e.g., buffer overflow), naming issues are less
studied and their importance lacks common understanding.
Moreover, the severity of code quality issues can be subjec-
tive and varies among developers. To demonstrate that the
issues reported by Namer are relevant, we conducted a small
user study with professional developers, described in § 5.4.

Speed of Namer. The experiments were performed on a
28-core machine with two 2.60 GHz Intel Xeon E5-2690 CPUs
and 512 GB RAM running Ubuntu 18.04. The experiments
for [9] and [28] in § 5.6 require GPU so they were performed
on a machine with RTX 2080 Ti GPUs.

Namer is quite performant with its runtime dominated by
the program analyses described in § 4.1. On average, Namer
spent 20ms for Java and 39ms for Python analyzing one
source file on a single core of the test server. Because each
file is analyzed separately, we parallelized the analysis on all
28 cores of the machine.

Table 2. Precision of Namer and baselines on 300 randomly
selected violations from the Python dataset. "C" stands for
the defect classifier and "A" stands for the static analyses.

Baseline Report Semantic
defect

Code quality
issue

False
positive Precision

Namer 134 5 89 40 70%
w/o C 300 13 124 163 46%
w/o A 88 2 50 36 59%
w/o C & A 300 12 108 180 40%

5.2 Results for Python
We now evaluate Namer on the Python dataset. We first
discuss the precision of Namer. Then, we provide examples
of naming issues found by Namer. At last, we show detailed
statistics on the mined name patterns and the classifier.

Precision of Namer. For Python, we obtained 134 re-
ports by running the trained classifier on the randomly se-
lected 300 violations. The results of the manual inspection
are shown in the first row of Table 2. Among the reports
by Namer, we manually found 5 semantic defects, 89 code
quality issues, and 40 false positives, resulting in a precision
of 70%. The high precision demonstrates the effectiveness of
Namer on real world Python code.

Necessity of classifier and analyses. We now investi-
gate the impact of the static analyses and the defect classifier
on the effectiveness of Namer. To this end, we constructed
three baselines, by excluding the defect classifier, the anal-
ysis module, or both, from Namer. For each baseline, we
similarly inspected the bug reports on 300 randomly selected
violations. The inspection results are reported in rows 2–4
of Table 2. Row 2 shows the results for the baseline where
the classifier was excluded from Namer, i.e., only pattern
matching was performed. All 300 violations were reported
as naming issues where 163 were false positives, resulting in
a precision of 46%. Row 3 shows the results for the baseline
for which the program analyses in § 4.1 were not performed.
Compared to Namer, this baseline found fewer semantic
defects and fewer code quality issues and was less precise.
From the comparison, we can see that the analyses and

the classifier are both necessary parts of Namer. The anal-
yses not only improved Namer’s precision but also helped
Namer find more issues. The classifier may filter out some
true positives but significantly reduced the number of false
positives, resulting in significantly higher precision while
retaining similar recall as before, which is a desired prop-
erty in practice as it allows Namer’s users to spend minimal
efforts on inspecting the bug reports.
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Table 3. Examples of reports by Namer for Python.

Index Reported statement Suggested fix

Semantic defects
1 self.assertTrue(vec, 4) Equal

2 for i in xrange(10) range

3 self.assertEquals(3, val) Equal

Code quality issues
4 num_or_process = 3 of

5 def evolve(self, ..., **args): kwargs

6 self.sz = N.array(sz) np

False positives
7 self.assertTrue(os.path.islink(path)) exists

8 self.read_line_block() log

Examples of reports made by Namer. We ran Namer
on more statements in our Python dataset and present ex-
amples of reports in Table 3. For each example, we show the
reported statement and the fix suggested by Namer:

• Example 1 is similar to the one described in § 2 but the call
has different arguments. The issue may cause unexpected
runtime behavior. Namer correctly suggested to change
assertTrue to assertEqual.

• Examples 2 and 3 show the cases where Namer detects
and fixes deprecated API calls. In Example 2, xrange is a
built-in function in Python 2 but gets removed in Python
3. In Example 3, assertEquals is a deprecated function in
the unittest library.

• Example 4 contains a typo. Namer proposed a correct fix
to the typo by changing or to of.

• Examples 5 and 6 are code quality issues where the original
names do not conform with the standard naming conven-
tions. In Example 5, args is used for keyworded variable
length arguments. However, kwargs should be used in-
stead for keyworded arguments and args should be used
for non-keyworded variable length arguments. Namer
suggested the exact fix for Example 5. In Example 6, N is
used as the abbreviation for the library numpy. However,
np is commonly used and is a more informative name.

• Examples 7 and 8 are false positives of Namer. Example
7 asserts whether a given file path in the path variable
is a symbolic link by calling the function islink. How-
ever, Namer wrongly suggested to replace the function
with exists. This is because the usage of exists inside
assertTrue is more frequent than the usage of islink in
our dataset. For Example 8, Namer suggested to replace
line with log according to the violated pattern. However,
line is not an incorrect or confusing name according to
the semantics of the function (not shown here).

Table 4. Manual inspection of 100 Python Namer reports
per pattern type with a breakdown of code quality issues.

Inspection outcome Consistency Confusing word

Semantic defect 1 9
Code quality issue 71 53
False positive 28 38

Breakdown of code quality issues
Confusing name 19 14
Indescriptive name 9 6
Inconsistent name 26 23
Minor issue 15 7
Typo 2 3

The above examples show that Namer can find and fix
different kinds of naming issues, including those that require
a deep semantic understanding of the program (e.g., correct
usage of API calls).

Statistics on pattern mining and classification. In to-
tal, 65, 619 name patterns were mined for the Python dataset.
496, 306 program statements, 439, 508 source files (50% of all
source files), and 30, 388 repositories (92% of all repositories)
violated at least one of the mined patterns. These numbers
show that the mined patterns did not represent only very
rare events in our dataset.
As discussed in § 5.1, we used cross-validation for model

selection. Now we report the cross-validation results for
our selected model (support vector machine). We randomly
took 80% of labeled samples for training the model and then
tested the trained model on the remaining 20% samples. We
repeated this for 30 times. The average accuracy, precision,
recall, and F1 score were 81%, 81%, 81%, and 80%, respectively.

Distribution of naming issues per pattern type. In our
evaluation, around 29% of the reports came from consistency
name patterns, while 81% of the reports were from confus-
ing word patterns. The sum is above 100% because 10% of
the reports were detected by both patterns. To obtain more
detailed statistics on the precision of Namer per pattern
type, we ran Namer on all of the repositories in our dataset,
randomly selected 100 new reports for each of the two name
pattern types, and manually inspected the selected reports.
The inspection results are shown in Table 4. We can see that
the confusing word name pattern tended to recover more se-
mantic defects, while the consistency name pattern produced
fewer false positives.
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Table 5. Precision of Namer and baselines on 300 randomly
selected violations from the Java dataset. "C" stands for the
defect classifier and "A" stands for the static analyses.

Baseline Report Semantic
defect

Code quality
issue

False
positive Precision

Namer 97 2 64 31 68%
w/o C 300 2 90 208 31%
w/o A 138 0 66 72 48%
w/o C & A 300 0 87 213 29%

5.3 Results for Java
Next, we evaluate Namer on the Java dataset. The procedures
and experiments for the Java dataset were performed in the
same way as those for the Python dataset.

Precision of Namer. The results of Namer on the 300
selected violations from the Java dataset are shown in the
first row of Table 5. The precision was 68%, similar to the pre-
cision of Namer for the Python dataset (70%), showing that
the framework is generic and can precisely detect naming
issues for different types of languages.

Necessity of classifier andanalyses. The last three rows
of Table 5 show the results when the classification module,
the analyses module, and both of them, were excluded from
Namer, respectively. Namer outperformed all three baselines
in precision by a large margin, reassuring the importance of
the static analyses and the classifier.

Examples of reports found by Namer. We present ex-
amples of reports found by Namer for Java in Table 6:
• Example 1 calls getStackTrace, which returns the stack
trace information, with receiver e (a thrown exception).
However, the return value is not assigned to any variable,
which makes the call redundant. As a result, the user might
miss important information about the exception. Namer
suggested to fix it by calling printStackTrace to print the
stack trace to the standard error stream.

• Example 2 uses type double for loop index variable i, which
may cause unexpected program behavior due to floating-
point operations. Namer suggested to use type int.

• Example 3 catches a Throwable variable e. Exception and
Error are both subclasses of Throwable. Catching Throwable
includes catching Error. However, the official documenta-
tion [2] suggests that Error should not be caught. Namer
correctly suggested to catch Exception instead of Error.

• Example 4–6 show cases where Namer suggested more
descriptive variable names than the original names. In Ex-
ample 4, Namer detected and fixed a typo where public is
misspelled into publick. Example 5 is an Android API call
for creating a new activity. The argument of the function
startActivity is of type Intent and thus Namer suggested

Table 6. Examples of reports by Namer for Java.

Index Reported statement Suggested fix

Semantic defects
1 e.getStackTrace(); print

2 for(double i = 1; i < chainlength; i++) { int

3 } catch (Throwable e) { Exception

Code quality issues
4 this.publicKey = publickKey; public

5 context.startActivity(i); intent

6 progDialog.dismiss(); progress

False positives
7 final StringWriter outputWriter = ...; string

8 ConektaObject resource = new ConektaObject(); Json

to use the name intent instead of i. Example 6 dismisses
an Android dialog represented by the variable progDialog.
Namer suggested to replace progwith progress to indicate
that the dialog is a progress dialog.

• Examples 7 and 8 are two false positives. In Example 7,
Namer suggested to change the name outputWriter to
stringWriter to better fit the class name StringWriter.
However, according to program context, the original name
is better. In Example 8, Namer suggested to replace class
ConektaObjectwith JsonObject because JsonObject is used
more frequently in our dataset. However, ConektaObject
should be the correct class.

Statistics on pattern mining and classification. For
the Java dataset, 79, 417 name patterns were mined, which
resulted in over 1.8 million violations. Moreover, 11% (i.e.,
453, 450) of all the source files and 77% (i.e., 25, 496) of all the
repositories had at least one violation. Similar to Python, the
mined patterns had a high coverage for the Java dataset. In
the cross-validation, the average accuracy, precision, recall,
and F1 score were 90%, 90%, 90%, and 89%, respectively.

Distribution of naming issues per pattern type. For
the Java dataset, around 14.5% of the reports came from con-
sistency name patterns and 91.7% of the reports were from
confusing word patterns. The sum is above 100%, because
6.2% of the reports were detected by both patterns. To obtain
more detailed precision statistics, we ran Namer on all the
repositories in our evaluation and obtained 100 new reports
of each of the two bug pattern types. Then, we performed
a manual inspection. For the consistency pattern, 0, 76 and
24 reports were classified as semantic defects, code quality
issues and false positives, respectively. For the confusing
word pattern, the number of semantic defects, code quality
issues and false positives was 3, 36 and 61, respectively.
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Table 7. Code quality issues selected for our user study described in § 5.4.

Issue category Original code snippet Detected issue & suggested fix

Inconsistent name if docstring is not None:

self.help = docstring
Rename help to docstring

Minor Issue def fullpath_set(self , value):

self._fullpath = value

Rename value to a more
descriptive name like fullpath

Confusing name
def __init__(self , song , ** kwargs ):

self._defaults = CODED_DEFAULTS

self._factory = song

self.set(** kwargs)

Change some name to avoid
code like self._factory = song

Typo self.port = por Rename por to port

Indescriptive name def reset(self , *e):

self._autostep = 0
Rename e to a more descriptive name

Table 8. User study results of seven professional developers
on whether to accept code quality issues reported by Namer.

Issue category Not
accepted

Accepted
with IDE

plugin

Accepted
with pull
request

Would
even fix

manually

Confusing name 0 3 2 2
Indescriptive name 0 3 2 2
Inconsistent name 2 0 4 1
Minor issue 2 4 0 1
Typo 1 2 1 3

5.4 User Study on Severity of Code Quality Issues
To gain more insights into the severity of code quality issues
found by Namer, we performed a small user study showing
5 Python reports to professional developers from a software
company with no mandatory naming style guides. The 5
reports, shown in Table 7, were chosen by randomly pick-
ing one sample from each category in the breakdown of
Table 4 and were shuffled. The participants were not aware
of Namer and were not told that the reports were provided
by an automatic tool. They were asked if and at what con-
ditions they would accept the changes in the reports as the
project maintainers. The conditions include (i) at coding time
with an automatic IDE plugin, (ii) after coding time with an
automatic pull request, and (iii) the developer is willing to
fix the issue manually once seeing it.

The study received 7 responses which are shown in Table 8.
The results demonstrate that the developers found the issues
relevant. Only in 5 cases, an issue was not accepted and in
9 cases, the developers were even willing to fix the issues
themselves. For most cases, developers accepted a report
only if an automatic tool like Namer, either in the form of
an IDE plugin or pull requests, locates the issue and suggests
a fix for them.

Table 9. Feature weights of the learned classifier.

Feature File level Repo level Entire dataset

Identical statement 0.6345 -2.854 -
Satisfaction count 1.86 0.468 -0.7305
Violation count -1.121 -1.0655 1.5565

5.5 Understanding Classifier Decision Making
Seeing the effectiveness of Namer, one natural question to
ask is why the classifier performed well and based on what
the classifier made decisions. Since we used a linear model
on standardized features, the weights of the learned classifier
are useful in measuring how much each individual feature
contributes to the final decision. In Table 9, we summarize
the feature weights averaged from the learned classifiers for
Python and Java. The three rows show the weights of feature
2-3, 4-6, and 7-9, respectively.
We can see that the absolute values of all weights were

non-negligible, meaning that the classifier makes decisions
based on various features. Moreover, the classifier learned
interesting behaviors non-obvious to a human: the contribu-
tion of the same type of feature can be completely opposite
over different levels. For example, for the violation count
feature, the weights over file and repository level were nega-
tive but over the entire dataset, the weight was positive. This
phenomenon demonstrates that jointly considering both lo-
cal and global features is another key reason for the classifier
to precisely distinguish between true issues and false pos-
itives. The above observations are in contrast to previous
works [34, 38, 41] which involves only one or few weak
predictors, and can give insights for future bug finding tools.

5.6 Comparison with Deep Learning Approaches
We now compare Namer with two state-of-the-art deep
learning based approaches for finding name based issues,
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Table 10. Precision comparision of GGNN, Great and Namer
on 134 randomly selected reports for Python.

System Semantic
defects

Code quality
issues

False
positives Precision

GGNN 1 20 113 16%
Great 2 9 123 8%
Namer 5 89 40 70%

GGNN [9] and Great [28]. Both works leverage deep neural
networks over program graphs to detect misuses of variable
names and reported high accuracy on testing datasets with
synthetic bugs. However, the high testing accuracy does not
necessarily reflect their capability of finding real world is-
sues. This is because the distribution of true issues is not
necessarily the same as the distribution of synthetic issues
used to train and test the network models. In fact, both works
presented only limited evaluation results on finding real prob-
lems in code. The authors of GGNN presented case studies
on bugs but did not include quantitative measures. Great’s
precision dropped to 29.4% on a dataset of only hundreds of
buggy and non-buggy programs that the authors collected
by comparing Github commits. Therefore, the practical ef-
fectiveness of GGNN and Great on finding real world issues
is still unknown. Through our evaluation, we aim to under-
stand the practical effectiveness of these works and compare
their precision with Namer.

Training andmeasuring accuracy. We re-implemented
the pipeline of GGNN and Great based on the machine learn-
ing modules open sourced by the authors [4, 5]. To obtain
training program graphs, we followed the original works
[9, 28] to introduce synthetic changes to the programs in our
Python and Java datasets. Note that it is impossible to train
GGNN and Great with real issues as we did with Namer.
This is because deep networks are data hungry and a dataset
with a sufficient amount of real issues does not exist and is
hard to obtain with either manual labor or automation. The
training processes took around 70h to 130h.
After training, we measured the accuracy of GGNN and

Great to ensure that each individual model can achieve high
accuracy as reported in the original papers [9, 28]. We did not
aim to compare the accuracy across those models. For each
model, we sampled a subset of programs from our dataset, in-
troduced synthetic changes to them, and constructed 10, 000
new program graphs. The new graphs were not used in train-
ing though the original programs could be. Then, we fed the
graphs into the trainedmodels and obtained the accuracy. For
GGNN, the accuracy was 71% (resp., 83%) for Python (resp.,
Java). For Great, the classification accuracy, localization ac-
curacy and repair accuracy for Python (resp., Java) were 91%,
83%, and 79% (resp., 91%, 82%, and 81%), respectively.

Table 11. Precision comparision of GGNN, Great and Namer
on 97 randomly selected reports for Java.

System Semantic
defects

Code quality
issues

False
positives Precision

GGNN 2 7 88 9%
Great 2 3 92 5%
Namer 2 64 31 68%

From these results on accuracy, we could reproduce the
fact that GGNN and Great result in high accuracy on the
dataset of synthetic code changes. Further, these numbers
closely match the results in the original papers [9, 28].

Precision of detecting issues. Next, we evaluate GGNN
and Great on finding real world issues. To this end, we tested
GGNN and Great on our dataset without any synthetically in-
troduced changes. Same as Namer, we inspected a randomly
selected set of issue reports for GGNN and Great. All true
variable misuses were classified as semantic issues as they
usually cause unexpected program behaviors. We found that
some reports were not variable misuses but pointed to other
kinds of naming issues, e.g., unused variables. We included
them as true positives and classified them into semantic
issues and code quality issues based on our criterion in § 5.1.

A factor that affects the precision and recall of a bug find-
ing tool is the confidence level above which a report is made.
For GGNN and Great, we could not determine the total num-
ber of true issues that can be theoretically reported by the
respective models in comparison to the total number of is-
sues discoverable by Namer, but based on a sample of the
frequency of the issues in code, we estimated that a name
misuse predictor should be applicable to at least one fifth
of the naming problems. To compensate for this effect, we
tuned the confidence levels so that both GGNN and Great
reported around 5× fewer issues than Namer.

The results on randomly inspected reports for Python are
shown in Table 10. Both GGNN and Great found very few
true issues, resulting in the reported low precision: GGNN
achieved 16% precision with 1 semantic defect and 20 code
quality issues; Great achieved 8% precision with 2 semantic
defects and 9 code quality issues. This low detection capabili-
ties of the networks do not mean that there are no true issues
of the specific kind, it just shows that the probability distri-
bution of issues encoded in the predictor did not correlate
with that of real naming issues. As shown in Table 11, the
networks also achieved low precision for Java (9% for GGNN
and 5% for Great). We tried to increase the confidence levels
of GGNN and Great to the maximum level, i.e., inspecting
the most confident reports, as done by [9, 39]. This enabled
GGNN and Great to find more semantic issues and increased
their precision to ∼40%. However, with such high confidence
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levels, the recall became nearly zero, which is not desired in
practice, and the precision was still non-satisfactory.

Compared to GGNN and Great, Namer has a much higher
precision of ∼70%, despite returning 5× more reports. An-
other important aspect is that the naming rules mined by
Namer and the decision making process of the classifier
are highly interpretable, while neural code models are non-
interpretable and are vulnerable to adversarial attacks [16].
As a result, developers can inspect and better understand
the issues reported by Namer. Therefore, we conclude that
Namer is practically more effective than GGNN and Great.

6 Related Work
In this section, we discuss works mostly related to ours.

6.1 Naming issue detection and repair
Existing techniques on naming issue detection can be catego-
rized into two kinds: rule-based and learning-based. Namer
can be seen as a combination of the two types of techniques.

Rule-based approaches. The works of [30, 34, 38] lever-
age rule-based anomaly detection for finding naming issues.
The detection solely depends on extracted rules [30] or sim-
ilarity measures [34, 38], while Namer’s decision process
considers more factors and features. The work of [41] uses
a graph matching algorithm to detect argument selection
defects in an industry level codebase. The above approaches
only focus on a specific type of naming issue (wrong usages
of function arguments) and a specific language (Java). On
the contrary, Namer can detect more kinds of naming issues
and targets both Java and Python.

Learning-based approaches. A number of recent works
propose machine learning techniques for name-based bug
finding. Apart from GGNN [28] and Great [28] discussed in
§ 5.6, GINN [47] is another graph neural network for code
that leverages a hierarchy of intervals over the control flow
graph for better message passing. For detecting variable mis-
uses, GINN achieves higher accuracy than GGNN and Great,
but suffers from the same limitation: synthetic issues are
used for training. DeepBugs [39] learns embeddings for code
snippets to detect three types of naming bugs for Javascript:
swapped arguments, wrong binary operator, and wrong bi-
nary operand. DeepBugs achieves high precision on the most
confident reports (i.e., low number of reports). It is unclear
how effective DeepBugs is in a realistic scenario where a
higher number of reports is desired.

Instead of detecting bugs, other works learn probabilistic
models for predicting or suggesting identifier names. Proba-
bilistic graphical models are employed in [15, 27, 40] for pre-
dicting identifier names for minified Javascript program, ob-
fuscated Android applications and stripped binaries, respec-
tively. Naturalize [8] suggests identifier names by learning
statistical language models representing coding conventions.

Convolutional attention networks are used in [10] for code
summarization, i.e., method name suggestion. Other notable
works [11, 13] use paths between AST nodes as input fea-
tures to a neural network trained to summarize code and
predict descriptive method names.

6.2 Machine Learning and Program Reasoning
In the following, we discuss research at the intersection of
machine learning and program reasoning.

Static analysis. Bayesian optimization [36] and reinforce-
ment learning [29, 43] have been used for balancing the
tradeoff between precision and performance for numerical
program analysis. API specifications are a key ingredient in
modern static analysis. Atlas [14] leverages active learning
to obtain points-to specifications. Uspec [22] learns API alias-
ing specifications with unsupervised learning. Seldon [20]
infers taint specifications by solving linear optimization. Sta-
tistical methods have been used to rank and classify alerts
from static analyzers [25, 31].

Testing. Machine learning has been adopted to improve
test input generation. Skyfire [46] learns from an input cor-
pus and input grammar for generating well-distributed seed
inputs for fuzzing. AFLFast [17] learns a markov chain for
modeling program branching behavior to guide input genera-
tion. The work of [42] learns feed-forward networks from al-
ready generated fuzzing inputs to guide future mutation. ILF
[26] learns gate recurrent units from input traces generated
by symbolic execution. The work of [23] learns recurrent
neural networks from an existing test corpus.

7 Conclusion
We proposed a novel approach for finding and fixing naming
issues. Our method combines interpretable name patterns
mined from Big Code to represent different kinds of naming
idioms together with a machine learning classifier that filters
false positives, trained on expressive features. Importantly,
making use of Big Code does not require labeling the pro-
grams (which would be practically infeasible), while we only
require a small amount of labeled data to train the classifier.

We implemented our approach in a system called Namer
which supports both Python and Java, and evaluated it ex-
tensively on a massive dataset of open source repositories.
Our experimental results showed that Namer is able to find
real world naming issues and suggest correct fixes with high
precision (∼70%). We also showed that Namer is practically
more effective than state-of-the-art deep neural network
approaches (that use synthetic data).
We believe this work presents new insights in building a

practical bug finding tool with machine learning. It also re-
assures the importance of program abstraction and analyses
in finding defects and other issues in real world code.
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